1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kakasveta [241]
3 years ago
12

One algebra question please!

Mathematics
1 answer:
jeyben [28]3 years ago
3 0

Hello from MrBillDoesMath!

Answer:   3x^3    + 6 x^2  - 12 x   (the third choice)

Discussion:

(x^2 + 2x -4) * (3x) =


x^2 (3x) + 2x (3x) -4 (3x)  =


3x^3     + 6 x^2  - 12 x


which is the third choice

Thank you,

MrB

You might be interested in
Candy selling at six dollars per pound will be mixed with candy selling at nine dollars per pound how many pounds of more expens
podryga [215]

The 15 lbs at $7=$105

So multiple 5x9 as a test and check results. 105-45=60

Here you can see that 60 is a factor of 6 by 10 so you got lucky and got the answer of 10lbs at $6 & 5lbs at $9=15 lbs at $7 average

3 0
3 years ago
For each rectangle below, write a linear equation that represents the area y of the rectangle. Solve this system of two linear e
Hatshy [7]

(5,24)

  • The two areas are the same.

  • To find the area, we multiply the side lengths. Y=area

Rectangle 1: side lengths 4 and (x+1)

y=4(x+1)= 4x+4

Rectangle 2: side lengths 3 and (2x-2)

y=3(2x-2)= 6x-6

  • Since the two areas are same, we can conclude that

4x+4=6x-6

  • Now, simplify.

-2x=-10, x=5

  • Since x is 5, we can plug it into the equations to find y.

Option 1 with rectangle 1: y=4(5)+4, y=24

Option 2 with rectangle 2: y=6(5)-5, y=24

I graphed the linear equation on desmos.

5 0
2 years ago
M(4,2) is the midpoint of RS. The coordinates of S are (6, 1). what are the coordinates of R?
nirvana33 [79]
Remark
You are using the midpoint formula. Instead of finding the midpoint, you are looking for one of the points, so you have to rearrange the formula a little bit.

Givens
Midpoint (4,2)
One endpoint (6,1)

Object
Find the other endpoint.

Formula
m(x,y) = (x1 + x2)/2, (y1 + y2)/2)

Solution
Find the x value
4 = (6 + x2)/2    Multiply both sides by 2
4*2 = 6 + x2      Subtract 6 from both sides.
8 - 6 = x2
x2 = 2

Find the y value
2 = (1 + y2)/2    Multiply by 2
4 = 1 + y2          Subtract 1 from both sides.
4 - 1 = y2  
y2 = 3

Conclusion
R(x,y) = (2,3)

8 0
3 years ago
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
Corina used standard algorithm. and multiplied 62×22 and got the product 1,042 explain why Corina's answer is not reasonable
Sliva [168]
62
×22
=124
+1240
=1364
her answer is not responsible because how can 124+1240=1,042
3 0
4 years ago
Other questions:
  • True or False? The sum of the differences is never zero for any distribution consisting of n observations.
    11·2 answers
  • Which system of equations has the same solution as the system below? 2x+2y=16 and 3x-y=4
    11·1 answer
  • If 5 cans of dog food are 7.75'what is the cost of 20cans
    11·2 answers
  • What is the simply of 6/20 of a fraction?
    5·2 answers
  • How do the gcf and the lcm help you when multiplying and adding or subracting fractions
    12·1 answer
  • What is the range of the function y = -x ^2 + 1?
    9·1 answer
  • 1 2/3 + 1/8 <br> Can you help pls <br> Nowww pls
    12·2 answers
  • How is the relationship between the formula for the volume of a cone and the formula for the volume of acylinder
    10·1 answer
  • Given: 3c + d = f + g, d = f, g = c + 8; Prove: c = 4
    11·1 answer
  • Can anyone help me answer this?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!