Answer:
the density makes something float or sink below water its the "water weight "
Explanation:
Answer:

Explanation:
given,
Speed of a wave on violin A = 288 m/s
Speed on the G string = 128 m/s
Force at the end of string G = 110 N
Force at the end of string A = 350 N
the ratio of mass per unit length of the strings (A/G). = ?
speed for string A
.......(1)
speed for string G
........(2)
Assuming force is same in both the string
now,
dividing equation (2)/(1)




When the system is experiencing a uniformly accelerated motion, there are a set of equations to work from. In this case, work is energy which consist solely of kinetic energy. That is, 1/2*m*v2. First, let's find the final velocity.
a = (vf - v0)/t
2.6 = (vf - 0)/4
vf = 10.4 m/s
Then W = 1/2*(2100 kg)*(10.4 m/s)2
W = 113568 J = 113.57 kJ
Which excerpt are you talking about?
Answer:
9.6J+88.2J=97.8J
Explanation:
Here the velocity of the seagull is given,mass is given and its height.
We have to find its mechanical energy my friend.
Mechanical energy=kinetic energy + potential energy.
First we will find kinetic energy.
For calculating kinetic energy we need mass and velocity,which are given here.
So, Ek=

So by substituting the values we get 9.6J.
Now we find the potential energy which is mgh.
By substituting the values we get 88.2J.
Then we add both of those and get 97.8J
I hope this satisfies you and make sure you contact me if it doesn't