Answer:
ok.
what benchmark 1 1/8 is closet to (ps benchmarks on the side) and do the same for 2 2/5 . and the benchmarks that you found subtract them.
lol sorry though I don't know sorry
Step-by-step explanation:
Try this solution:
D(f): √(2-x)≥0; ⇔ 2-x≥0; ⇔ x≤2 or x∈(-∞; 2].
first off, let's notice that Purple's time is in minutes, whilst the rate is in miles per hour, the units of both must correspond, so, we can either change the time from minutes to hours or the rate from hours to minutes, hmmm let's change the time to hours.
so 40 minutes, we know there are 60 minutes in 1 hour, so 40 minutes will be 40/60 of an hr, or namely 2/3.
![\qquad \qquad \textit{inverse proportional variation} \\\\ \textit{\underline{y} varies inversely with \underline{x}} ~\hspace{6em} \stackrel{\textit{constant of variation}}{y=\cfrac{\stackrel{\downarrow }{k}}{x}~\hfill } \\\\ \textit{\underline{x} varies inversely with }\underline{z^5} ~\hspace{5.5em} \stackrel{\textit{constant of variation}}{x=\cfrac{\stackrel{\downarrow }{k}}{z^5}~\hfill } \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cqquad%20%5Cqquad%20%5Ctextit%7Binverse%20proportional%20variation%7D%20%5C%5C%5C%5C%20%5Ctextit%7B%5Cunderline%7By%7D%20varies%20inversely%20with%20%5Cunderline%7Bx%7D%7D%20~%5Chspace%7B6em%7D%20%5Cstackrel%7B%5Ctextit%7Bconstant%20of%20variation%7D%7D%7By%3D%5Ccfrac%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bk%7D%7D%7Bx%7D~%5Chfill%20%7D%20%5C%5C%5C%5C%20%5Ctextit%7B%5Cunderline%7Bx%7D%20varies%20inversely%20with%20%7D%5Cunderline%7Bz%5E5%7D%20~%5Chspace%7B5.5em%7D%20%5Cstackrel%7B%5Ctextit%7Bconstant%20of%20variation%7D%7D%7Bx%3D%5Ccfrac%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bk%7D%7D%7Bz%5E5%7D~%5Chfill%20%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

Answer: 30
Step-by-step explanation: when you look at the x value of 9, the y value on the best fit line would be 30
35 and 41 are two consecutive numbers