Answer:
The current in the coil is 4.086 A
Explanation:
Given;
radius of the circular coil, R = 2.5 cm = 0.025 m
number of turns of the circular coil, N = 740 turns
magnetic field at the center of the coil, B = 0.076 T
The magnetic field at the center of the coil is given by;

where;
μ₀ is permeability of free space = 4 x 10⁻⁷ m/A
I is the current in the coil
R is radius of the coil
N is the number of turns of the coil
The current in the circular coil is given by

Therefore, the current in the coil is 4.086 A
initial speed of 226000 m/s
acceleration of 4.0 x 1014 m/s2,
speed of 781000 m/s
What is Acceleration?
- Acceleration is a rate of change of velocity with respect to time with respect to direction and speed.
- A point or an object moving in a straight line is accelerated if it speeds up or slows down.
- Acceleration formula can be written as,
a = (v - u ) / t m/s²
As we have to find the time taken, the formula can be altered as,

where, t - time taken to reach a final speed
v - final velocity
u - initial velocity
a - acceleration.
Substituting all the given values,

= 1.3875 × 10⁻⁹ seconds.
So, taken to reach the final speed is found to be 1.3 × 10⁻⁹ 8iH..
If it is a headwind it means it's travelling against the motion of the plane. This means it's velocity is simply v=720-16=704 km/h due east.
Answer:
ax = 6.43m/s²
Explanation:
The acceleration is the time derivative of the velocity function ax = dvx(t)/dt
We have been given the velocity function v(t) and also the velocity v = 12.0m/s and we are requested to calculate the acceleration at this time which we don't know.
So the first step is to calculate the time at which the velocity =12.0m/s and with this time calculate the acceleration. Detailed solution can be found in the attachment below.