1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melisa1 [442]
3 years ago
13

If you roll a six-sided die, what is the probability that you will obtain a number greater than 2

Mathematics
2 answers:
gladu [14]3 years ago
7 0

Answer:

4 out of 6

Step-by-step explanation:

1 and 2 are not greater than 2 so subtract those to numbers from 6 and that number(4) out of 6 is you probability

asambeis [7]3 years ago
4 0

Answer:

the probability is 4/6

Step-by-step explanation:

bc is you have six sides labeled 1-6, and you want to get higher than 2, 1 and 2 are out which leaves 3 4 5 and 6 which amounts to 4 numbers out of 6 so 4/6 or 2/3 or %66.66666666666...

You might be interested in
PLEASE WILL NAME BRAINLIST
oksano4ka [1.4K]
The difference between 11.0 and 12.5 is 1.5 and same with 12.5 and 14.0, so 1.5 is what the hair increases by every THREE months but if you want to find PER month, you are going to divide 1.5 by those 3 months to get .5 inches per month, so your slope will be 1/2
5 0
3 years ago
A freight elevator can hold a maximum weight of 3,500 pounds.
Brrunno [24]

Answer:

C

Step-by-step explanation:

200 + 48c \leqslant 3500

48c \leqslant 3300

c \leqslant 68.75

5 0
2 years ago
Julie multiplies 6.27 by 7 and claims the product is 438.9. Explain without multiplying how you know Julie’s answer is not corre
Karolina [17]

Answer:

SHe put the decimal point in the wrong spot, it's suppose to be 43.89

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
X^3+6x^2-17x+2-x^3-x^2-11x+36
Rudiy27
<span>X^3+6x^2-17x+2-x^3-x^2-11x+36 = </span>5x^2 - 28x + 38
4 0
3 years ago
1. cot x sec4x = cot x + 2 tan x + tan3x
Mars2501 [29]
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
    cot(x)sec⁴(x)            cot(x)sec⁴(x)
                   0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
                   0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
                   0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
                   0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
                   0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
                   0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
                   0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
                   0 = cos⁴(x)(1 + tan²(x))²
                   0 = cos⁴(x)        or         0 = (1 + tan²(x))²
                ⁴√0 = ⁴√cos⁴(x)      or      √0 = (√1 + tan²(x))²
                   0 = cos(x)         or         0 = 1 + tan²(x)
         cos⁻¹(0) = cos⁻¹(cos(x))    or   -1 = tan²(x)
                 90 = x           or            √-1 = √tan²(x)
                                                         i = tan(x)
                                                      (No Solution)

2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
              sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
   sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
                               sin²(x) - cos²(x) = sin²(x) - cos²(x)
                                         + cos²(x)              + cos²(x)
                                             sin²(x) = sin²(x)
                                           - sin²(x)  - sin²(x)
                                                     0 = 0

3. 1 + sec²(x)sin²(x) = sec²(x)
           sec²(x)             sec²(x)
      cos²(x) + sin²(x) = 1
                    cos²(x) = 1 - sin²(x)
                  √cos²(x) = √(1 - sin²(x))
                     cos(x) = √(1 - sin²(x))
               cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
                                 x = 0

4. -tan²(x) + sec²(x) = 1
               -1               -1
      tan²(x) - sec²(x) = -1
                    tan²(x) = -1 + sec²
                  √tan²(x) = √(-1 + sec²(x))
                     tan(x) = √(-1 + sec²(x))
            tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
                             x = 0
5 0
3 years ago
Other questions:
  • Miss Watson runs a distance of 200 meters in 25 seconds
    5·1 answer
  • Use the drawing tool(s) to form the correct answer on the provided number line.
    14·1 answer
  • Find the area of the parallelogram whose vertices are given below. ​A(negative 2​,2​) ​B(2​,0​) ​C(10​,3​) ​D(6​,5​)
    14·1 answer
  • Riddle: What is seen in the middle of March and April that can’t be seen at the beginning or end of either month?
    5·2 answers
  • If a=-9 and b= -4, what is the value of a + b?<br> 0-5<br> 5<br> -13<br> 13
    8·1 answer
  • Identify the correct statement for the given figure.
    13·1 answer
  • Indentify the terms coefficients, and constants in each expression
    10·2 answers
  • A retail store makes a profit of $3.75 for each $10.00 of goods sold. How much profit would the store make on a $45.00 purchase?
    6·1 answer
  • The sides of a square have length s.<br> 4 Write a formula for the perimeter P of the square.
    8·1 answer
  • M3L3
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!