Right now it's written in scientific notation, so you can just move the decimal place in 3.8 to the right 3 times (as it is times 10 to the third power) to get 3,800g.
The molarity of formic acid is 100 mM or
. The dissociation reaction of formic acid is as follows:

The expression for dissociation constant of the reaction will be:
![K_{a}=\frac{[HCOO^{-}][H^{+}]}{[HCOOH]}](https://tex.z-dn.net/?f=K_%7Ba%7D%3D%5Cfrac%7B%5BHCOO%5E%7B-%7D%5D%5BH%5E%7B%2B%7D%5D%7D%7B%5BHCOOH%5D%7D)
Rearranging,
![[HCOO^{-}]=\frac{K_{a}[HCOOH]}{[H^{+}]}](https://tex.z-dn.net/?f=%5BHCOO%5E%7B-%7D%5D%3D%5Cfrac%7BK_%7Ba%7D%5BHCOOH%5D%7D%7B%5BH%5E%7B%2B%7D%5D%7D)
Here, pH of solution is 4.15 thus, concentration of hydrogen ion will be:
![[H^{+}]=10^{-pH}=10^{-4.15}=7.08\times 10^{-5}M](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-4.15%7D%3D7.08%5Ctimes%2010%5E%7B-5%7DM)
Similarly,
thus,

Putting the values,
![[HCOO^{-}]=\frac{(1.78\times 10^{-4}M)(100\times 10^{-3}M)}{(7.08\times 10^{-5}M}=0.2511 M](https://tex.z-dn.net/?f=%5BHCOO%5E%7B-%7D%5D%3D%5Cfrac%7B%281.78%5Ctimes%2010%5E%7B-4%7DM%29%28100%5Ctimes%2010%5E%7B-3%7DM%29%7D%7B%287.08%5Ctimes%2010%5E%7B-5%7DM%7D%3D0.2511%20M)
Therefore, the concentration of formate will be 0.2511 M.
The temperature of something.
<h3><u>Answer;</u></h3>
- Molecules along the surface of a liquid behave differently than those in the bulk liquid.
- Cohesive forces attract the molecules of the liquid to one another.
- Surface tension increases as the temperature of the liquid rises
<h3><u>Explanation;</u></h3>
- Surface tension is measured as the energy required to increase the surface area of a liquid by a unit of area. The surface tension of a liquid results from an imbalance of intermolecular attractive forces, the cohesive forces between molecules.
- A molecule in the bulk liquid experiences cohesive forces with other molecules in all directions, while a molecule at the surface of a liquid experiences only net inward cohesive forces.
- Surface tension decreases when temperature increases because cohesive forces decrease with an increase of molecular thermal activity.
When you calculate results that are aiming for known values, the percent error formula is useful tool for determining the precision of your calculations. The formula is given by: The experimental value is your calculated value, and the theoretical value is your known value.