Answer:
4 Ohms
Explanation
(This is seriously not as hard as it looks :)
You only need two types of calculations:
- replace two resistances, say, R1 and R2, connected in a series by a single one R. In this case the new R is a sum of the two:

- replace two resistances that are connected in parallel. In that case:

I am attaching a drawing showing the process of stepwise replacement of two resistances at a time (am using rectangles to represent a resistance). The left-most image shows the starting point, just a little bit "warped" to see it better. The two resistances (6 Ohm next to each other) are in parallel and are replaced by a single resistance (3 Ohm, see formula above) in the top middle image. Next, the two resistances (9 and 3 Ohm) are nicely in series, so they can be replaced by their sum, which is what happened going to the top right image. Finally we have two resistances in parallel and they can be replaced by a single, final, resistance as shown in the bottom right image. That (4 Ohms) is the <em>equivalent resistance</em> of the original circuit.
Using these two transformations you will be able to solve step by step any problem like this, no matter how complex.
we know the equation for the period of oscillation in SHM is as follows:
T = 2 * pi * sqrt(mass/k)
we know f = 1/T, so f = 1/(2 * pi) * sqrt(k/m).
since d = v*T, we can say v = d/t = d * f
the final equation, after combining everything, is as follows:
v = d/(2 * pi) * sqrt(k/m)
by plugging everything in
v = .75/(2 * pi) * sqrt((1 * 10^5)/(30))
We find our velocity to be:
v = 6.89 m/s
The largest mass is 4.7 x 10³⁰ kg and the smallest mass is 5 x 10²⁹ kg.
The given parameters;
- <em>distance between the two black holes, r = 10 AU = 1.5 x 10¹² m</em>
- <em>gravitational force between the two black holes, F = 6.9 x 10²⁵ N.</em>
- <em>combined mass of the two black holes = 5.20 x 10³⁰ kg</em>
The product of the two masses is calculated from Newton's law of universal gravitational as follows;

The sum of the two masses is given as;
m₁ + m₂ = 5.2 x 10³⁰ kg
m₂ = 5.2 x 10³⁰ kg - m₁
The first mass is calculated as follows;
m₁(5.2 x 10³⁰ - m₁) = 2.328 x 10⁶⁰
5.2 x 10³⁰m₁ - m₁² = 2.328 x 10⁶⁰
m₁² - 5.2 x 10³⁰m₁ + 2.328 x 10⁶⁰ = 0
<em>solve the quadratic equation using formula method</em>;
a = 1, b =- 5.2 x 10³⁰, c = 2.328 x 10⁶⁰

The second mass is calculated as follows;
m₂ = 5.2 x 10³⁰ kg - m₁
m₂ = 5.2 x 10³⁰ kg - 4.7 x 10³⁰ kg
m₂ = 5 x 10²⁹ kg
or
m₂ = 5.2 x 10³⁰ kg - 4.9 x 10²⁹ kg
m₂ = 4.7 x 10³⁰ kg
Thus, the largest mass is 4.7 x 10³⁰ kg and the smallest mass is 5 x 10²⁹ kg.
Learn more here:brainly.com/question/9373839
The kinetic energy of the object is 392 Joules.