Answer:
<h3>The mass of an object is the same on Earth, in orbit, or on the surface of the Moon. ... 1N=1kg ⋅m/s2. 1 N = 1 kg · m/s 2 . ... The gravitational force on a mass is its weight. ... </h3>
Explanation:
<h3>ILY:)</h3>
Answer:
-30°C
Explanation:
F-32/180 =C-0/100
or, -22-32/180=C/100
or, -54/180*100=C
or, -0.3*100=C
therefore, C= -30
-22°F = -30°C
PLEASE MARK ME AS BRAINLIEST!
Angle, θ2 at which the light leaves mirror 2 is 56°
<u>Explanation:</u>
Given-
θ1 = 64°
So, α will also be 64°
According to the figure:
α + β = 90°
So,
β = 90° - α
= 90° - 64°
= 26°
β + γ + 120° = 180°
γ = 180° - 120° - β
γ = 180° - 120° - 26°
γ = 34°
γ + δ = 90°
δ = 90° - γ
δ = 90° - 34°
δ = 56°
According to the law of reflection,
angle of incidence = angle of reflection
θ2 = δ = 56°
Therefore, angle θ2 at which the light leaves mirror 2 is 56°
Answer:
For a given spring the extension is directly proportional to the force applied For example if the force is doubled, the extension doubles When an elastic object is stretched beyond its limit of proportionality the object does not return to its original length when the force is removed
Explanation:
Answer:
the shooting angle ia 18.4º
Explanation:
For resolution of this exercise we use projectile launch expressions, let's see the scope
R = Vo² sin (2θ) / g
sin 2θ = g R / Vo²
sin 2θ = 9.8 75/35²
2θ = sin⁻¹ (0.6)
θ = 18.4º
To know how for the arrow the tree branch we calculate the height of the arrow at this point
X2 = 75/2 = 37.5 m
We calculate the time to reach this point since the speed is constant on the X axis
X = Vox t
t2 = X2 / Vox = X2 / (Vo cosθ)
t2 = 37.5 / (35 cos 18.4)
t2 = 1.13 s
With this time we calculate the height at this point
Y = Voy t - ½ g t²
Y = 35 sin 18.4 1.13 - ½ 9.8 1,13²
Y = 6.23 m
With the height of the branch is 3.5 m and the arrow passes to 6.23, it passes over the branch