Answer:
1.08 x 10²⁵molecules
Explanation:
From the mole concept we know that ;
1 mole of any substance contains 6.02 x 10²³ molecules
This number is the Avogadro's number.
So;
18 mole of CH will contain:
Number of molecules of CH = 18 x 6.02 x 10²³ = 1.08 x 10²⁵molecules
The number of molecules is therefore 1.08 x 10²⁵molecules
<span>The
kingdom, protista’s characteristics are that the organism (not a plant,
animal or fungus) are:
unicellular however some are multicellular like algae, are heterotrophic or
autotrophic, others lives in water while some live in moist areas or human body,
have a nucleus, cellular respiration is primarily aerobic, some are pathogenic
(e.g. causing Malaria) and reproduction is mitosis or meiosis. This kingdom
includes: Sacordinians – pseudopods (e.g. Amoeba, Foraminiferans<span>.)</span>, Zooflagellates – flagellates
(e.g. Trypanosoma gambiense),
Ciliaphorans – ciliates (e.g. paramecium) and Sporozoans (e.g. Plasmodium).</span>
Answer:
184.62 ml
Explanation:
Let and be the initial and and be the final pressure, volume, and temperature of the gas respectively.
Given that the pressure remains constant, so
...(i)
= 200 ml
K
K
From the ideal gas equation, pv=mRT
Where p is the pressure, v is the volume, T is the temperature in Kelvin, m is the mass of air in kg, R is the specific gas constant.
For the initial condition,
For the final condition,
Equating equation (i), and (ii)
[from equation (i)]
Putting all the given values, we have
Hence, the volume of the gas at 3 degrees Celsius is 184.62 ml.
Answer: what the hell does that mean
Explanation:
Answer: Option (3) is the correct answer.
Explanation:
Aerobic organisms are the organisms which survive and grow in the presence of oxygen.
When oxidation of glucose occurs in the presence of oxygen then it is known as aerobic respiration.
In aerobic respiration, food releases energy to produce ATP which is necessary for cell activity. There is complete breakdown of glucose in aerobic respiration that is why more energy is released. Therefore, aerobic organisms become active.
Thus, we can conclude that characteristics very active, efficient use of energy describes aerobic organisms.