<em>c</em> = 1.14 mol/L; <em>b</em> = 1.03 mol/kg
<em>Molar concentration
</em>
Assume you have 1 L solution.
Mass of solution = 1000 mL solution × (1.19 g solution/1 mL solution)
= 1190 g solution
Mass of NaHCO3 = 1190 g solution × (7.06 g NaHCO3/100 g solution)
= 84.01 g NaHCO3
Moles NaHCO3 = 84.01 g NaHCO3 × (1 mol NaHCO3/74.01 g NaHCO3)
= 1.14 mol NaHCO3
<em>c</em> = 1.14 mol/1 L = 1.14 mol/L
<em>Molal concentration</em>
Mass of water = 1190 g – 84.01 g = 1106 g = 1.106 kg
<em>b</em> = 1.14 mol/1.106 kg = 1.03 mol/kg
I believe the type of compound fe3n2 is ionic.
1 mole of reacts with 8 moles of to form 1 mole of and 3 moles of
<h3>What is a tetraphosphorus decoxide?</h3>
Tetraphosphorus decoxide, () is a non-metal oxide that gives acidic property when dissolved in water.
The name phosphorus decoxide can be interpreted as 4 phosphorus (P) atoms (‘Tetra’), bonds with 10 oxygen (O) atoms (‘Dec’) in a molecule. besides that, it is also known as phosphorus pentoxide.
It can be prepared by heating pure phosphorus with oxygen in blast furnace.
+ →
It is used as a dehydrating agent due to its week van der Waals dispersion forces. Thus, owing to give exothermic reaction when dissolved in watermore precisely, it is a white crystalline anhydrous (without water molecule) solid.
In granular form it can be also used as desiccant as well.
Learn more about phosphorus from the given link:
brainly.com/question/25352398
#SPJ4
Answer:
0.053moles
Explanation:
Hello,
To calculate the number of moles of gas remaining in his after he exhale, we'll have to use Avogadro's law which states that the volume of a given mass of gas is directly proportional to its number of moles provided that temperature and pressure are kept constant. Mathematically,
V = kN, k = V / N
V1 / N1 = V2 / N2= V3 / N3 = Vx / Nx
V1 = 1.7L
N1 = 0.070mol
V2 = 1.3L
N2 = ?
From the above equation,
V1 / N1 = V2 / N2
Make N2 the subject of formula
N2 = (N1 × V2) / V1
N2 = (0.07 × 1.3) / 1.7
N2 = 0.053mol
The number of moles of gas in his lungs when he exhale is 0.053 moles