Answer:
2. 
3. 
Explanation:
Hello there!
2. In this case, we can evidence the problem by which volume and temperature are involved, so the Charles' law is applied to:

Thus, considering the temperatures in kelvins and solving for the final volume, V2, we obtain:

Therefore, we plug in the given data to obtain:

3. In this case, it is possible to realize that the 3.7 moles of neon gas are at 273 K and 1 atm according to the STP conditions; in such a way, considering the ideal gas law (PV=nRT), we can solve for the volume as shown below:

Therefore, we plug in the data to obtain:

Best regards!
Answer:
5.00 grams of salt contain more particles than 5.0 grams of sugar
Explanation:
Salt = NaCl
Molar mass = 58.45 g/mol
Sugar = C₁₂H₂₂O₁₁
Molar mass = 342.3 g/mol
Sugar's molar mass is higher than salt.
So 1 mol of sugar weighs more than 1 mol of salt
But 5 grams of salt occupies more mole than 5 grams of sugar
5 grams of salt = 5g / 58.45 g/m = 0.085 moles
5 grams of sugar = 5g/ 342.3 g/m = 0.014 moles
In conclusion, we have more moles of salt in 5 grams; therefore there are more particles than in 5 g of sugar.
4Al(s) + 3O2(g) --> 2Al2O3(s) This is the balanced.
From the equation:
4 moles of Al required 3 moles of O2 to produce 2 moles of Al2O3
3 moles of O2 reacted with 4 moles of Al to produce 2 moles of Al2O3
1 mole of O2 reacted with 4/3 moles of Al to produce 2/3 moles of Al2O3 (Divide by 3)
4.5 moles of O2 reacted with (4/3 *4.5) moles of Al to produce (2/3*4.5) moles of Al2O3
4.5 moles of O2 reacted with 6moles of Al to produce 3moles of Al2O3
(3) is the answer. 6 mol of Al.
Answer:
We normally separate unreacted hydrogen from ammonia (product) in Haber process. The reaction mixture contains some ammonia, plus a lot of unreacted hydrogen and nitrogen. The mixture is cooled and compressed, causing the ammonia gas to condense into a liquid.