Answer:
Ava gives each cat 2 treats. 3 treats are left.
Step-by-step explanation:
15/6 = 2.5
If she wants to split them evenly then she can only give each cat 2 treats. so 2 x 6 = 12 which means that there are 3 treats left
Answer:
−7x−5y=4 - 7 x - 5 y = 4. Rewrite in slope-intercept form. Tap for more steps... The slope-intercept form is y=mx+b y = m x + b , where m m is the slope and b b is ...
Step-by-step explanation:
Use FOIL
<span>(1-p)(1+p+p^2+p^3+p^4+p^5+p^6)
</span><span>1+p+p^2+p^3+p^4+p^5+p^6 -1p - p^2 - p^3 - p^4 - p^5 - p^6
</span><span>1 + p -1p <------------------Answer</span>
Answer:
B)
Step-by-step explanation:
Given f(x) = ( 7 - 8x )²
let f(x) be y,
y = ( 7 - 8x )² .............to find inverse we have to make x the subject.
±√y = 7 - 8x
-8x = √y - 7
x = (±√y - 7 ) / -8
Then,
Inverse of ( 7 - 8x )² is
and is a function.
Answer:
The maximum profit is when they make 10 units of A and 2 units of B.
Step-by-step explanation:
Let x is units of milk
Let y units of cacao
Given that :
The company's production plant has a total of 22 units of milk and 46 units of cacao available.
2x + y ≤ 22 (2 unit of milk for each of A and 1 for B; 22 units available)
4x + 3y ≤46 (4 unit of milk for each of A and 3 for B; 46 units available
Graph the constraint equations and find the point of intersection to determine the feasibility region.
The intersection point (algebraically, or from the graph) is (10, 2)
The objective function for the problem is the total profit, which is $6.2 per unit for A and $4.2 per unit for B: 6.2x + 4.2y.
Hence, we substitute (10, 2) into the above function:
6.2*10 + 4.2*2 = 70.4
The maximum profit is when they make 10 units of A and 2 units of B.