Answer:
Explanation:
Let the vertical height by which it descends be h . Let it acquire velocity of v .
1/2 mv² = mgh
v² = 2gh
As it leaves the surface of sphere , reaction force of surface R = 0 , so
centripetal force = mg cosθ where θ is the angular displacement from the vertex .
mv² / r = mg cosθ
(m/r )x 2gh = mg cosθ
2h / r = cosθ
cosθ = (r-h) / r
2h / r = r-h / r
2h = r-h
3h = r
h = r / 3
Explanation:
Current output at the battery will be current of entire circuit, while the current through each bulb in the parallel circuit is the total current circuit.
So, current output through power supply is i and current through each component be
considering only three component.
Then in a parallel circuit

Answer:
Explanation:
The application of Gauss's law is used in the derivation as shown with detailed step by step in the attached file.
The potential difference on this spherical capacitor is ΔV = Va - Vb = kQ/a - kQ/b = kQ(1/a - 1/b)
Answer:
40 N/m
Explanation:
The diagram attached is used to answer the question
We know from Hooke's law that extension is directly proportional to the applied force hence
F=kx where x is extension, F is applied force and k is the spring constant. Making k the subject of the formula then

From the attached diagram extension is given by subtracting unstretched spring from stretched spring hence extension, x=1-0.5=0.5m
Substituting 20 N for F and 0.5 m for x then
