<span>Acceleration is the rate of
change of the velocity of an object that is moving. This value is a result of
all the forces that is acting on an object which is described by Newton's
second law of motion. Calculations of such is straightforward, if we are given
the final velocity, the initial velocity and the total time interval. However, we are not given these values. We are only left by using the kinematic equation expressed as:
d = v0t + at^2/2
We cancel the term with v0 since it is initially at rest,
d = at^2/2
44 = a(6.2)^2/2
a = 2.3 m/s^2
</span>
(a)
Electronic configuration is given as follows:
![[Kr]4d^{3}](https://tex.z-dn.net/?f=%5BKr%5D4d%5E%7B3%7D)
Since, this is the electronic configuration of ion with+3 that means 3 electrons are removed. On adding the 3 electrons, the electronic configuration of neutral atom can be obtained.
Thus, electronic configuration of neutral atom is
.
The atomic number of Kr is 36, thus, total number of electrons become 36+6=42.
This corresponds to element: molybdenum. Thus, the tripositive atom will be
.
(b) The given electronic configuration is
.
The atomic number of Kr is 36, thus, total number of electrons become 36+4=40.
This corresponds to element zirconium, represented by symbol Zr.
Answer:
209 m
Explanation:
The y-component of a vector is the magnitude times the sine of the angle.
y = 253 sin 55.8°
y = 209
the answer is a) 0.00235 because 1/425=0.00235. hope I helped!
Answer:
F=m(11.8m/s²)
For example, if m=10,000kg, F=118,000N.
Explanation:
There are only two vertical forces acting on the rocket: the force applied from its thrusters F, and its weight mg. So, we can write the equation of motion of the rocket as:

Solving for the force F, we obtain that:

Since we know the values for a (2m/s²) and g (9.8m/s²), we have that:

From this relationship, we can calculate some possible values for F and m. For example, if m=10,000kg, we can obtain F:

In this case, the force from the rocket's thrusters is equal to 118,000N.