Answer:
Metals conduct heat and reduce the kinetic energy within the components that need to remain cool
Answer:
C
Explanation:
hope for help ....im expert
Answer:
d ≈ 7,6 g/cm³
Explanation:
d = m/V = 40g/5,27cm³ ≈ 7,6 g/cm³
V = l³ = (1.74cm)³ ≈ 5,27 cm³
Answer:
a) t = 0.0185 s = 18.5 ms
b) T = 874.8 N
Explanation:
a)
First we find the seed of wave:
v = fλ
where,
v = speed of wave
f = frequency = 810 Hz
λ = wavelength = 0.4 m
Therefore,
v = (810 Hz)(0.4 m)
v = 324 m/s
Now,
v = L/t
where,
L = length of wire = 6 m
t = time taken by wave to travel length of wire
Therefore,
324 m/s = 6 m/t
t = (6 m)/(324 m/s)
<u>t = 0.0185 s = 18.5 ms</u>
<u></u>
b)
From the formula of fundamental frquency, we know that:
Fundamental Frequency = v/2L = (1/2L)(√T/μ)
v = √(T/μ)
where,
T = tension in string
μ = linear mass density of wire = m/L = 0.05 kg/6 m = 8.33 x 10⁻³ k gm⁻¹
Therefore,
324 m/s = √(T/8.33 x 10⁻³ k gm⁻¹)
(324 m/s)² = T/8.33 x 10⁻³ k gm⁻¹
<u>T = 874.8 N</u>
Answer:
Explanation:
Here image distance is fixed .
In the first case if v be image distance
1 / v - 1 / -25 = 1 / .05
1 / v = 1 / .05 - 1 / 25
= 20 - .04 = 19.96
v = .0501 m = 5.01 cm
In the second case
u = 4 ,
1 / v - 1 / - 4 = 1 / .05
1 / v = 20 - 1 / 4 = 19.75
v = .0506 = 5.06 cm
So lens must be moved forward by 5.06 - 5.01 = .05 cm ( away from film )