Answer:
the vertical acceleration of the case is 1.46 m/s
Explanation:
Given;
mass of the clarinet case, m = 3.07 kg
upward force applied by the man, F = 25.60 N
Apply Newton's second law of motion;
the upward force on the clarinet case = its weight acting downwards + downward force due to its downward accelaration
F = mg + m(-a)
the acceleration is negative due to downward motion from the top of the piano.
F = mg - ma
ma = mg - F

Therefore, the vertical acceleration of the case is 1.46 m/s²
Answer:

Explanation:
= normal force acting on the coin
Normal force in the upward direction balances the weight of the coin, hence

= frequency of rotation
Angular velocity of turntable is hence given as

= distance from the axis of rotation
= minimum coefficient of static friction
static frictional force is given as

The static frictional force provides the necessary centripetal force , hence
Centripetal force = Static frictional force

206Pb = 1.342 x10^22 atoms
<span>To find the number of atoms, you must first find the number of moles. If 238U is 238.029g/mol, and we have 1.75 grams, how many moles is that? 1.75 divided by 238.029 = 0.007352045 moles. To find the number of atoms in 0.007352045 moles, you multiply by a mole: </span>
<span>0.007352045 x 6.02 x 10^23 = 4.426 x10^21 atoms. </span>
<span>Same procedure for 206Pb: </span>
<span>4.59 divided by 205.97446 = 0.022284316 moles </span>
<span>0.022284316 x 6.02 x 10^23 = 1.342 x10^22 atoms. </span>
<span>Hope that helps you!
https://answers.yahoo.com/question/index?qid=20100331153014AAoMXcu
</span>
A material that has high resistance to the flow of electric current is called an electric resistor
Answer:
<h2>0.67 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>0.67 m/s²</h3>
Hope this helps you