The question is incomplete. The complete question is
In the molecule on the left, areas that have a partial negative charge are pink and areas that have a partial positive charge are blue. The molecule on the right is nonpolar.
What will most likely happen when these molecules get closer?
The molecules will repel each other because of a dipole-dipole interaction. The molecules will attract each other because of a dipole-dipole interaction. An induced dipole will be produced in the molecule on the right. An induced dipole will be produced in the molecule on the left.
Answer:
An induced dipole will be produced in the molecule on the right.
Explanation:
The molecule on the left already possesses a dipole. A dipole means the presence of a negative end and a positive end in a molecule.
Hence when the other molecule approaches, the polarized molecule induces a dipole on it. This second kind of dipole is known as 'induced dipole' hence the answer.
<h2>Answer </h2>
Some mass changes into energy
<u>Explanation </u>
Some mass changes into energy are true about both nuclear fusion and nuclear fission. These both reactions produce large amounts of energy. Nuclear fusion is the process in which two light nuclei combine to form a larger nucleus. On the other hand, nuclear fission is reverse in which a heavy nucleus breaks into two light nuclei. Nuclear decay and transmission are also types of nuclear reactions. The matter is not destroyed in nuclear reactions.
Each half-life results in ~50% (1/2) of the original element remaining.
7500/1250 = 6 half-lives, so 100(1/2)^6
= 100(0.015625)
= 1.5625% of the original element would remain
C increased the decreases