Answer: The mass of potassium bromide that must be dissolved in the same mass of X to produce the same depression in freezing point is 58.2 grams
Explanation:
Depression in freezing point is given by:
= Depression in freezing point
i= vant hoff factor = 1 (for non electrolyte)
= freezing point constant =
m= molality =


Let Mass of solute (KBr) = x g
Thus the mass of potassium bromide that must be dissolved in the same mass of X to produce the same depression in freezing point is 58.2 grams
Answer:
Kb for CH₃NH₂ (methylamine) is 4.4 × 10⁻⁴
Hope that helps.
You can find moles of a substance by dividing mass by the molecules molar mass.
Explanation:
Carbon Monoxides Molar mass is 12.0111 (Carbon) + 16.0000 (Oxygen) = 28.0111g/mol. Divide grams by molar mass:
<span><span><span>36.55g</span>28.0111</span>=1.305mol<span>s</span></span>
<span><span>
</span></span>
<span><span>
</span></span>
<span><span>
</span></span>
an element whose properties are intermediate between those of metals and solid nonmetals. they are electrical semiconductors.
Answer:
The mass is 0.855 grams (option A)
Explanation:
Step 1: Data given
aluminium sulfate = Al2(SO4)3
Numer of moles Al2(SO4)3 = 2.50 * 10^-3 moles
atomic mass Al = 26.99 g/mol
atomic mass S = 32.065 g/mol
Atomic mass O = 16 g/mol
Step 2: Calculate molar mass Al2(SO4)3
Molar mass = 2* 26.99 + 3*32.065 + 12*16
Molar mas = 342.175 g/mol
Step 3: Calculate mass Al2(SO4)3
Mass Al2(SO4)3 = moles Al2(SO4)3 * molar mass Al2(SO4)3
Mass Al2(SO4)3 = 2.5 *10^-3 moles * 342.175 g/mol
Mass Al2(SO4)3 = 0.855 grams
The mass is 0.855 grams (option A)