Answer:
This is because of diffusion , the movement of particles from an area of high concentration to an area of low concentration. ... This means that diffusion does not happen in solids – the particles in a solid can only vibrate and cannot move from place to place.
Answer:
2.75 × 10⁻⁶ M/s
1.69 × 10⁻⁶ M/s
9.23 × 10⁻⁻⁷ M/s
4.43 × 10⁻⁻⁷ M/s
2.1 × 10⁻⁻⁷ M/s
Explanation:
We have the following information for the isomerization of methyl isonitrile
Time (s) [CH₃NC] (M)
0 0.0165
2000 0.0110
5000 0.00591
8000 0.00314
12000 0.00137
15000 0.00074
To calculate the average rate of reaction (r) for each interval, we need to use the following expression:
r = -Δ[CH₃NC]/Δt
Interval 0-2000 s
r = - (0.0110 M-0.0165 M)/2000 s - 0 s = 2.75 × 10⁻⁶ M/s
Interval 2000-5000 s
r = - (0.00591 M-0.0110 M)/5000 s - 2000 s = 1.69 × 10⁻⁶ M/s
Interval 5000-8000 s
r = - (0.00314 M-0.00591 M)/8000 s - 5000 s = 9.23 × 10⁻⁻⁷ M/s
Interval 8000-12000 s
r = - (0.00137 M - 0.00314 M)/12000 s - 8000 s = 4.43 × 10⁻⁻⁷ M/s
Interval 12000-15000 s
r = - (0.00074 M - 0.00137 M)/15000 s - 12000 s = 2.1 × 10⁻⁻⁷ M/s
The new volume : 21.85 ml
<h3>Further explanation</h3>
Given
V1=25,0 ml
P1=725 mmHg
T1=298K is converted to
T2=273'K
P2=760 mmHg atm
Required
V2
Solution
Combined gas law :

Input the value :
V2=(P1.V1.T2)/(P2.T1)
V2=(725 x 25 ml x 273)/(760 x 298)
V2=21.85 ml
They are particular solids.
The test for this is fairly simple.
We take a glowing match or splint near the gas sample, if the glow intensifies, oxygen is present.
If a lit splint or match goes out with a popping sound, this means that hydrogen is present.