Answer
7665 years
Procedure
Let N₀ be the amount of carbon-14 present in a living organism. According to the radioactive decay law, the number of carbon-14 atoms, N, left in a dead tissue sample after a certain time, t, is given by the exponential equation:
N = N₀e^(-λt)
where λ is the decay constant which is related to half-life (T1/2) by the equation:

Here, ln(2) is the natural logarithm of 2.
The percent of carbon-14 remaining after time t is given by N/N₀.
Using the first equation, we can determine λt.
The half-life of carbon-14 is 5,720 years, thus, we can calculate λ using the second equation, and then find t.

Solving the second equation for t, and using the λ we have just calculated we will have
t= 7665 years
In the compound nh3, nitrogen has an oxidation number of 3+ and hydrogen has an oxidation number of -1
The molecule NH3 have a neutral charge so the number of oxidation number of it's component must be equal to zero. The molecule NH composed of 1 nitrogen and 3 hydrogens. If the nitrogen oxidation number is 3+, then hydrogen would be:
1* N + 3*H=0
1*+3 +3*H=0
3H= -3
H= -1
Answer:The correct answer is ;
The oxidation state of nitrogen in NO changes from +2 to 0, and the oxidation state of carbon in CO changes from +2 to +4 as the reaction proceeds.
Explanation:

In an oxidation recation addition of oxygen atom takes place or loss of electrons takes place.
In an reduction reaction removal of oxygen atom takes place or gain of electrons takes place.
In the given reaction , the nitrogen atom is present in +2 oxidation state in NO molecule and present in 0 oxidation state in
molecule. Hence, nitrogen is getting reduced that is reduction reaction. NO is oxidizing agent
In the given reaction , the carbon atom is present in +2 oxidation state in CO molecule and present in +4 oxidation state in
molecule. Hence ,carbon is getting oxidized that is oxidation reaction. CO is a reducing agent.