Answer:
Hope the above picture might help you :)
Answer:

Explanation:
It is given that,
Initially, the electron is in n = 7 energy level. When it relaxes to a lower energy level, emitting light of 397 nm. We need to find the value of n for the level to which the electron relaxed. It can be calculate using the formula as :


R = Rydberg constant, 

Solving above equation we get the value of final n is,

or

So, it will relax in the n = 2. Hence, this is the required solution.
Answer:
(a) Energy density will be equal to 
(b) Total energy will be equal to 0.0718 J
Explanation:
It is given that length of solenoid l = 78.8 cm = 0.788 m
Cross sectional area 
Number of turns of the wire N = 914
Current in the solenoid i = 8.25 A
Inductance of the wire is equal to 
(b) Total energy stored in magnetic field 
(a) Energy density will be equal to

Answer:
159 N
Explanation:
The force of friction, Fr is a product of coefficient of feiction and the normal force. Therefore, Fr=uN where N is the normal force and u is coefficient of friction. Here, we have two coefficients of friction but since it is sliding, then we use coefficient of kinetic energy. Substituting 0.25 for u and 636 N for N then
Fr=0.25*636=159 N
Therefore, the force of friction is equivalent to 159 N