The complete balanced chemical reaction is:
2 AgNO3 + Na2S --> 2 NaNO3 + Ag2S
First let us calculate the number of moles of AgNO3.
moles AgNO3 = 0.315 M * 0.035 L
moles AgNO3 = 0.011025 mol
From the reaction, 1 mole of Na2S is needed for every 2
moles of AgNO3 hence:
moles Na2S required = 0.011025 mol AgNO3 * (1 mol Na2S / 2
mol AgNO3)
moles Na2S required = 5.5125 x 10^-3 mol
Therefore volume required is:
volume Na2S = 5.5125 x 10^-3 mol / 0.260 M
<span>volume Na2S = 0.0212 L = 21.2 mL</span>
Answer:
2 mol H₂O
Explanation:
With the reaction,
- 2H₂(g) + O₂(g) → 2 H₂O(g)
1.55 moles of O₂ would react completely with ( 2*1.55 ) 3.1 moles of H₂. There are not as many moles of H₂, thus H₂ is the limiting reactant.
Now we <u>calculate the moles of H₂O produced</u>, <em>starting from the moles of limiting reactant</em>:
- 2.00 mol H₂ *
= 2 mol H₂O
Hey there!
Molar mass of magnesium is 24.305.
One mole of magnesium has a mass of 24.305 grams.
We have 1.75 moles.
Multiply 1.75 by 24.305.
1.75 x 24.305 = 42.5
1.75 moles of magnesium has a mass of 42.5 grams.
Hope this helps!
I'm assuming that you meant 55 g/cm^
3. Density=

. This is the definition of density. If you rearrange this equation by multiplying each side of the equation by the volume, you get: (Density)(Volume)=Mass. Divide each side by the density to get: Volume=Mass/Density. Now just plug everything in:
V=220 (grams)/55 (grams/cm^3)=<u>4 cm^3</u>