Comment down below for the answer
Answer:
53.11× 10²³ molecules
Explanation:
Given data:
Number of molecules of CO₂ = ?
Mass of CO₂ = 388.1 g
Solution:
Formula:
Number of moles = mass/ molar mass
Molar mass of CO₂ = 12× 1 + 16×2
Molar mass of CO₂ = 44 g/mol
Now we will put the values in formula.
Number of moles = 388.1 g/ 44 g/mol
Number of moles = 8.82 moles
Now we will calculate the number of molecules by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ molecules
8.82 mol × 6.022 × 10²³ molecules / 1 mol
53.11× 10²³ molecules
Answer:
order = SrS > SrCl2 > RbCl > CsBr
Explanation:
Comparison of the melting points of compounds is basically dependent on the charge on their cation and anion, the more the charges on the cation and anion, the stronger and greater the force of attraction and as such the melting point will be relatively higher as well.
The ionic radii is also another factor to be considered, the more the distance between ions, the lesser the bond strength and the lesser the melting point.
from the options, in terms of ionic radii SrS > SrCl2 and RbCl > CsBr
also both SrS and SrCl2 have more charges on their ions compared to RbCl and CsBr and as such the arrangement of the highest melting point will be in the order SrS > SrCl2 > RbCl > CsBr.
Answer: 
Explanation: A double displacement reaction is one in which exchange of ions take place.
The compounds which are soluble in water are designated by symbol (aq) and those which are insoluble in water and remain in solid form are represented by (s) after their chemical formulas.
Thus the exchange of ions take place and all the compounds are soluble so the chemical formulas are followed by the symbol (aq).