Answer:
84.259 kPa
Explanation:
We know that:
1 kPa is approximately equal to 7.5 mmHg
Therefore, to convert 632 mmHg to kPa, we will simply use cross multiplication as follows:
1 kPa .................> 7.5006 mmHg
?? kPa ................> 632 mmHg
632 mmHg = (632*1) / (7.5006) = 84.259 kPa
Hope this helps :)
Answer:
No 1 is fission
while no 2 is fusion
Fission is splitting on nucleus while fusion is forming heavier nucleus with nuclei
It's hard to relate a mole to carbon or sulfur. Imagine if I walked up to you and said, "What's the relation between a dozen and donuts?"
A mole is a form of measurement for atoms, more specifically, 6.02 * 10^23 atoms. I suppose you could relate it to Carbon or Sulfur, since the number of atoms of each are usually measured in moles.
Carbon and Sulfur don't have a set number of moles (Just like donuts don't have to be a dozen), so it's hard to answer your second question.
In the atomic table, the number you see under the element is the molar mass, which is the weight of an a mole of the element. In this way, I guess there's a mole of Carbon and Sulfur present, if we're looking at the periodic table.
-T.B.
Answer:
The molecular formula = 
Explanation:
Given that:
Mass of compound, m = 0.145 g
Temperature = 200 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (200 + 273.15) K = 473.15 K
V = 97.2 mL = 0.0972 L
Pressure = 0.74 atm
Considering,
Using ideal gas equation as:
where,
P is the pressure
V is the volume
m is the mass of the gas
M is the molar mass of the gas
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the values in the above equation as:-
The empirical formula is =
Molecular formulas is the actual number of atoms of each element in the compound while empirical formulas is the simplest or reduced ratio of the elements in the compound.
Thus,
Molecular mass = n × Empirical mass
Where, n is any positive number from 1, 2, 3...
Mass from the Empirical formula = 12 + 1 = 13 g/mol
Molar mass = 78.31 g/mol
So,
Molecular mass = n × Empirical mass
78.31 = n × 13
⇒ n ≅ 6
The molecular formula = 