To solve this problem, we should recall the law of
conservation of energy. That is, the heat lost by the aluminium must be equal
to the heat gained by the cold water. This is expressed in change in enthalpies
therefore:
- ΔH aluminium = ΔH water
where ΔH = m Cp (T2 – T1)
The negative sign simply means heat is lost. Therefore we
calculate for the mass of water (m):
- 0.5 (900) (20 – 200) = m (4186) (20 – 0)
m = 0.9675 kg
Using same mass of water and initial temperature, the final
temperature T of a 1.0 kg aluminium block is:
- 1 (900) (T – 200) = 0.9675 (4186) (T – 0)
- 900 T + 180,000 = 4050 T
4950 T = 180,000
T = 36.36°C
The final temperature of the water and block is 36.36°C
The other 4 kg of mass may have departed the scene
of the fire, in the form of gases and smoke particles.
It will be traveling in the reverse direction it was originally going at 15.2 m/s
Answer:
Amplitude is decreased by a factor of
if intensity is decreased by a factor of 3.
Explanation:
Intensity of a sound wave is directly proportional to the square of its amplitude.
Therefore, if intensity is
and amplitude is
, then
, where,
is constant of proportionality.
Now, if intensity of sound wave is decreased by a factor of 3. So,
New intensity is, 

Plug in
for
. This gives,

Therefore, amplitude is decreased by a factor of
.
A nuclear power plant doesn't produce any of those things. It only produces electricity and heat. As long as there are no accidents, and the worn out nuclear fuel is handled properly, the nuclear plant isn't harmful to the environment at all.