As the length increases, resistance increases, as a result current decreases.
When the heat source is removed from a fluid, convection currents in the fluid will eventually distribute heat uniformly throughout the fluid. When all of the fluid is at the same temperature, convection currents will stop.
Answer:
10.21 N
Explanation:
As the force is a vector, it can be decomposed in two components perpendicular each other, so there is no projection of one component in the direction of the other.
When divided in this way, the magnitude of the resultant vector can be found simply applying trigonometry, as follows:
F² = Fx² + Fy² ⇒ F = √(Fx)²+(Fy)²
Replacing by Fx= 5.17 N and Fy = 8.8 N, we get:
F = √(5.17)²+(8.8)² =10.21 N
To solve this problem it is necessary to apply the concewptos related to Torque, kinetic movement and Newton's second Law.
By definition Newton's second law is described as
F= ma
Where,
m= mass
a = Acceleration
Part A) According to the information (and as can be seen in the attached graph) a sum of forces is carried out in mass B, it is obtained that,


In the case of mass A,


Making summation of Torques in the Pulley we have to



Replacing the values previously found,





Replacing with our values


PART B) Ignoring the moment of inertia the acceleration would be given by



Therefore the error would be,


