Answer:
It increases when the concentration of reactants increases.
Explanation:
Increasing the concentration of reactants in a reaction increases the amount of reacting molecules or ions which would increase the rate of a chemical reaction. Reaction rate does depend on temperature. Increasing temperature also increases reaction rate because particles move faster with the increased kinetic energy to produce more collisions.
Negative because it'll have to gain an electron
If the temperature of the sample of gas increases to the given value, the volume also increases to 600mL.
<h3>What is Charles's law?</h3>
Charles's law states that "the volume occupied by a definite quantity of gas is directly proportional to its absolute temperature.
It is expressed as;
V₁/T₁ = V₂/T₂
Given the data in the question;
- Initial temperature of gas T₁ = 100K
- Initial volume of gas V₁ = 300mL
- Final temperature T₂ = 200K
V₁/T₁ = V₂/T₂
V₂ = V₁T₂ / T₁
V₂ = ( 300mL × 200K ) / 100K
V₂ = 60000mLK / 100K
V₂ = 600mL
Therefore, if the temperature of the sample of gas increases to the given value, the volume also increases to 600mL.
Learn more about Charles's law here: brainly.com/question/12835309
#SPJ1
Answer:
0.42%
Explanation:
<em>∵ pH = - log[H⁺].</em>
2.72 = - log[H⁺]
∴ [H⁺] = 1.905 x 10⁻³.
<em>∵ [H⁺] = √Ka.C</em>
∴ [H⁺]² = Ka.C
∴ ka = [H⁺]²/C = (1.905 x 10⁻³)²/(0.45) = 8.068 x 10⁻⁶.
<em>∵ Ka = α²C.</em>
Where, α is the degree of dissociation.
<em>∴ α = √(Ka/C) </em>= √(8.065 x 10⁻⁶/0.45) = <em>4.234 x 10⁻³.</em>
<em>∴ percentage ionization of the acid = α x 100</em> = (4.233 x 10⁻³)(100) = <em>0.4233% ≅ 0.42%.</em>
Answer:
The answer is: Hydrolysis
Explanation:
Hydrolysis is the chemical method in which water molecule is added to a molecule, which leads to the cleavage of one or more chemical bonds in the molecule. In this reaction, the water molecule acts as a nucleophile and breaks down the large molecules like polymers into smaller molecules such as monomers. Hydrolysis reaction includes fragmentation, elimination substitution reactions.