1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lutik1710 [3]
3 years ago
7

As a pendulum swings from its highest to lowest position, what happens to its kinetic and potential energy?

Physics
2 answers:
DIA [1.3K]3 years ago
7 0

The potential energy decreases while the kinetic energy increases.



malfutka [58]3 years ago
4 0

Answer:

the potential decreases while the kinetic energy increases

Explanation:

You might be interested in
An ocean thermal energy conversion system is being proposed for electric power generation. Such a system is based on the standar
defon

Answer:

Explanation:

Dear Student, this question is incomplete, and to attempt this question, we have attached the complete copy of the question in the image below. Please, Kindly refer to it when going through the solution to the question.

To objective is to find the:

(i) required heat exchanger area.

(ii) flow rate to be maintained in the evaporator.

Given that:

water temperature = 300 K

At a reasonable depth, the water is cold and its temperature = 280 K

The power output W = 2 MW

Efficiency \zeta = 3%

where;

\zeta = \dfrac{W_{out}}{Q_{supplied }}

Q_{supplied } = \dfrac{2}{0.03} \ MW

Q_{supplied } = 66.66 \ MW

However, from the evaporator, the heat transfer Q can be determined by using the formula:

Q = UA(L MTD)

where;

LMTD = \dfrac{\Delta T_1 - \Delta T_2}{In (\dfrac{\Delta T_1}{\Delta T_2} )}

Also;

\Delta T_1 = T_{h_{in}}- T_{c_{out}} \\ \\ \Delta T_1 = 300 -290 \\ \\ \Delta T_1 = 10 \ K

\Delta T_2 = T_{h_{in}}- T_{c_{out}} \\ \\ \Delta T_2 = 292 -290 \\ \\ \Delta T_2 = 2\ K

LMTD = \dfrac{10 -2}{In (\dfrac{10}{2} )}

LMTD = \dfrac{8}{In (5)}

LMTD = 4.97

Thus, the required heat exchanger area A is calculated by using the formula:

Q_H = UA (LMTD)

where;

U = overall heat coefficient given as 1200 W/m².K

66.667 \times 10^6 = 1200 \times A \times 4.97 \\ \\  A= \dfrac{66.667 \times 10^6}{1200 \times 4.97} \\ \\  \mathbf{A = 11178.236 \ m^2}

The mass flow rate:

Q_{H} = mC_p(T_{in} -T_{out} )  \\ \\  66.667 \times 10^6= m \times 4.18 (300 -292) \\ \\ m = \dfrac{  66.667 \times 10^6}{4.18 \times 8} \\ \\  \mathbf{m = 1993630.383 \ kg/s}

3 0
3 years ago
Which electromagnetic waves have the shortest wavelength and the highest frequency?
ra1l [238]
It’s supposed to be gamma, what are your other options
5 0
2 years ago
Kevin is refinishing his rusty wheelbarrow. He moves his sandpaper back and forth 45 times over a rusty area, each time moving a
dmitriy555 [2]
W = _|....F*dx*cos(a)........With F=force, x=distance over which force acts on object,
.......0.............................and a=angle between force and direction of travel.

Since the force is constant in this case we don't need the equation to be an integral expression, and since the force in question - the force of friction - is always precisely opposite the direction of travel (which makes (a) equal to 180 deg, and cos(a) equal to -1) the equation can be rewritted like so:

W = F*x*(-1) ............ or ............. W = -F*x

The force of friction is given by the equation: Ffriction = Fnormal*(coeff of friction)

Also, note that the total work is the sum of all 45 passes by the sandpaper. So our final equation, when Ffriction is substituted, is:

W = (-45)(Fnormal)(coeff of friction)(distance)
W = (-45)...(1.8N).........(0.92).........(0.15m)
W = ................-11.178 Joules
5 0
3 years ago
An oxygen atom can absorb any frequency of light to cause its electrons to increase in energy.
sashaice [31]

Answer:

that's true.

Explanation:

that's the reason why oxygen supports burning.

8 0
2 years ago
according to newton's second law of motion of the net force acting on the object increases while the mass of the object remains
Licemer1 [7]

Answer:

The Acceleration will increase

Explanation:

Newton's Second Law of motion: It states that the rate of change of momentum is directly proportional to the applied force and takes places along the direction of the force.

It can be expressed mathematically as,

F ∝ m(v-u)/t

Where (v-u)/t = a

F  = kma.

F = force, m = mass of the body, a = acceleration, k = constant of proportionality which tend to unity for a unit force, a unit mass, and a unit acceleration.

Therefore,

F = ma.

From the equation above,

If the net force acting on a body increase, while the mass of the body remains constant, the acceleration will also increase.

4 0
3 years ago
Other questions:
  • How many gallons of water per day does the average American family of 4 use?
    13·2 answers
  • What is the primary consideration in choosing a solvent for crystallizing a compound
    11·1 answer
  • What is the net force required to accelerate a 16 kg box at a rate or 1.4 m/s^2
    7·1 answer
  • What is the difference between three types of mechanical waves?
    15·2 answers
  • Calculate the force of gravity on the 0.60- kg mass if it were 1.3×107 m above Earth's surface (that is, if it were three Earth
    12·1 answer
  • Answer quick to get brain list but not wrong
    9·1 answer
  • Angles t and v are complementary.angles T has a mesure of (2X+10). Angle v has a measure of 48 what is the value of x
    5·1 answer
  • If a diver displace water with a weight of 500N what is the upthrust on the diver?​
    8·1 answer
  • Can someone please help with this problem?
    8·1 answer
  • What is the electric current if a resistance of 100 Q and voltage of 12.0 V?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!