An electron cloud represents all the orbitals in an atom.
_Award brainliest if helped!
Velocity
Note : Not speed as Acceleration is a vector!
Answer:
a) -1.25 rev/s² and 23.3 rev
b) 2.67s
Explanation:
a) ω
= (500 rev/min)(1min/ 60s) => 8.333 rev/s
ω
= (200 rev/min)(1min/ 60s) => 3.333rev/s
time 't'= 4 s
angular acceleration 'α
'=?
constant angular acceleration equation is given by,
ω
= ω
+ α
t
α
= (ω
- ω
)/t => (3.333-8.333)/4
α
= -1.25 rev/s²
θ-θ
= ω
t + 1/2α
t²
=(8.333)(4) + 1/2 (-1.25)(4)²
=23.3 rev
b) ω
=0 (comes to rest)
ω
= 3.333 rev/s
α
= -1.25 rev/s²
ω
= ω
+ α
t
t= (ω
- ω
)/α
=> (0- 3.333)/-1.25
t= 2.67s
Answer:
The acceleration of the cart is 1.0 m\s^2 in the negative direction.
Explanation:
Using the equation of motion:
Vf^2 = Vi^2 + 2*a*x
2*a*x = Vf^2 - Vi^2
a = (Vf^2 - Vi^2)/ 2*x
Where Vf is the final velocity of the cart, Vi is the initial velocity of the cart, a the acceleration of the cart and x the displacement of the cart.
Let x = Xf -Xi
Where Xf is the final position of the cart and Xi the initial position of the cart.
x = 12.5 - 0
x = 12.5
The cart comes to a stop before changing direction
Vf = 0 m/s
a = (0^2 - 5^2)/ 2*12.5
a = - 1 m/s^2
The cart is decelerating
Therefore the acceleration of the cart is 1.0 m\s^2 in the negative direction.