Answer:
ac = 3.92 m/s²
Explanation:
In this case the frictional force must balance the centripetal force for the car not to skid. Therefore,
Frictional Force = Centripetal Force
where,
Frictional Force = μ(Normal Force) = μ(weight) = μmg
Centripetal Force = (m)(ac)
Therefore,
μmg = (m)(ac)
ac = μg
where,
ac = magnitude of centripetal acceleration of car = ?
μ = coefficient of friction of tires (kinetic) = 0.4
g = 9.8 m/s²
Therefore,
ac = (0.4)(9.8 m/s²)
<u>ac = 3.92 m/s²</u>
1. Delta, is formed by constructive erosion.
Answer:
176.58Watts
Explanation:
Power= work done /time
Where mass(m)=60kg
Height (h) =3m
Time(s)=10s
Force of gravity = 9.81m/s^2
Power=mgh/t
Power= (60kg) * (9.81m/s^2) * (3m)/10s
Power= 176.58Watts
Explanation:
6a) Work = force × distance
W = Fd
W = (60 N) (10 m)
W = 600 J
6b) Change in energy = work
ΔKE = 600 J
7a) Kinetic energy is half the mass times the square of the velocity.
KE = ½ mv²
KE = ½ (0.4 kg) (25 m/s)²
KE = 125 J
7b) Work = change in energy. When the ball is stopped, it has zero kinetic energy.
W = ΔKE
W = 0 J − 125 J
W = -125 J
Answer:
The rate of change of the area when the bottom of the ladder (denoted by
) is at 36 ft. from the wall is the following:

Explanation:
The Area of the triangle is given by
where
(by using the Pythagoras' Theorem) and
is the length of the base of the triangle or the distance between the bottom of the ladder and the wall.
The area is then

The rate of change of the area is given by its time derivative


Product rule
Chain rule


In here we can identify
,
and
.
The result is then
