Answer:
The answer to the questions is;
In terms of standing waves, the listener moves from a location with high amplitude to one with lower amplitude or vibration (anti-node to node)
The distance 4.1 cm is equivalent to λ/4
Explanation:
For standing waves we have is a stationary wave comprising of two opposite direction moving waves that have equal amplitude and frequency, resulting in the superimposition of the waves. As such certain points are fixed along the wave path that is the peaks amplitude of the wave oscillation is constant at a particular point. A node occurring at a point and an anti-node occurring at another fixed point
When the listener moves 4.1 cm he or she has left the anti-node to the node hence the faintness of the sound
The distance from the node to the anti-node is 1/4 wavelength, or 1/4×λ
Therefore 4.1 cm is λ/4
Answer:
Explanation:
It would actually be A. 30 , as each hour of ascension (i am not sure about the correct terminology) equals 15 .
By raising a position of an object, Its potential energy increases.
<span><span>Imagine we have a 2 lb ball of putty moving with a speed of 5 mph striking and sticking to a 18 lb bowling ball at rest; the time it takes to collide is 0.1 s. After the collision, the two move together with a speed of v1. To find v1, use momentum conservation: 2x5=(18+2)v1, v1=0.5 mph. </span><span>Next, imagine we have a 18 lb bowling ball moving with a speed of 5 mph striking and sticking to a 2 lb ball of putty at rest; the time it takes to collide is 0.1 s. After the collision, the two move together with a speed of v2. To find v2, use momentum conservation: 18x5=(18+2)v2, v2=4.5 mph. </span><span>
</span><span>
</span><span>now figure out your problem its really easy let me know if you need more help </span></span>
Answer:
d ) is the answer.
Explanation:
Let M be the mass and R be the radius of each of ball , hoop and disc.
kinetic energy of sphere - 1/2 MV² + 1/2 I ω² ,ω is angular velocity and
V = ωR
kinetic energy of sphere - 1/2 MV² + 1/2 x 2/5 MR² ω²
= 1/2 MV² + 1/5 MR² ω²
MV² ( 1/2 + 1/5 )
= .7 MV²
kinetic energy of Disk - 1/2 MV² + 1/2 I ω² ,ω is angular velocity and
V = ωR
kinetic energy of Disk - 1/2 MV² + 1/2 x 1/2 MR² ω²
= 1/2 MV² + 1/4 MR² ω²
MV² ( 1/2 + 1/4 )
= .75 MV²
kinetic energy of Hoop - 1/2 MV² + 1/2 I ω² ,ω is angular velocity and
V = ωR
kinetic energy of hoop - 1/2 MV² + 1/2 MR² ω²
= 1/2 MV² + 1/2 MR² ω²
MV² ( 1/2 + 1/2 )
= MV²
Kinetic energy is largest in case of hoop and least in case of sphere . So hoop will go up to the highest point and sphere will go to a height which will be least among the three.