Answer:
276.62 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s² (positive downward and negative upward)
Equation of motion

<u>Neglecting air drag</u> the velocity of the spherical drop would be 276.62 m/s
well, you divide 4 by 5, so .8
.8 of a mile is 4224 feet.
i really hope this helps :)
Answer:
The altitude of geostationary satellite is 
Explanation:
Given that,
Radius of moon's orbit 
Time period 
We need to calculate the orbital radius of geostationary satellite is
Using formula of time period


Where, G = gravitational constant
M = Mass of earth
T = time period of geostationary satellite orbit
Put the value in to the formula


We need to calculate the altitude of geostationary satellite
Using formula of altitude

Where, R = radius of earth
a = radius of geostationary satellite
Put the value into the formula



Hence, The altitude of geostationary satellite is 
Air resistance is ignored.
g = 9.8 m/s².
At maximum height, the vertical velocity is zero.
Let h = the maximum height reached.
Let u = the vertical launch velocity.
Because ot takes 5.0 seconds to reach maximum height, therefore
(u m/s) - (9.8 m/s²)*(5 s) = 0
u = 49 m/s
The maximum height reached is
h = (49 m/s)*(5 s) - (1/2)*(9.8 m/s²)*(5 s)²
= 122.5 m
Answer: 122.5 m
Answer:
yes
Explanation:
its not a good thing for the rest of your life but you have a PS4