Answer:
B. By adding the number of protons and the number of neutrons
Explanation:
The atomic mass is determined by adding the number of protons and neutrons in an atom. An atom is made up of three fundamental particles: Electrons, Protons and Neutrons.
The protons and neutrons occupy a central region in an atom known as the nucleus. The nucleus is positively charged and mass concentrated.
If we compare the relative masses of the subatomic particles, the masses of protons and neutrons would be 1 and that of an electron would be 1/1840. This shows that the mass of electrons are negligible.
In order to ascertain atomic mass, we therefore add the number of protons and neutrons together. This is how we arrive at 12.011 as the value of the atomic mass of C and for other elements.
The atomic mass is also known as the mass number.
The Force per meter on a straight wire carrying current in a magnetic field is<u> 0.045 N/m.</u>
<u>Calculation:-</u>
F/ℓ = B I sin θ
Where B – Magnetic field = 0.02 T I – Current = 5 A
Substituting the values
F/ℓ = (0.02) (5) (sin 27 deg)
F/ℓ = <u>0.045 N/m</u>
A force is an influence that can alternate the motion of an item. A force can cause an item with mass to trade its pace, i.e., to boost up. force can also be described intuitively as a push or a pull. A pressure has both value and course, making it a vector quantity.
The push or pull on an item with mass causes it to change its velocity. force is an external agent capable of converting a frame's nation of relaxation or motion. It has significance and a path. A force is a push or pulls among gadgets. it is called an interplay because if one object acts on some other, its movement is matched with the aid of a reaction from the alternative object.
Learn more about force here:-brainly.com/question/12970081
#SPJ4
The direction of the force experienced by the positive charge is upward.
We can use the right-hand rule to understand the direction of the Lorentz force acting on the charge: let's put the thumb in the same direction of the current in the wire (eastward), while the other fingers "wrap themselves" around the wire. These other fingers give the direction of the Lorentz force in every point of the space around the wire. Since the charge is located north of the wire, in that point the fingers are directed upward, so the positive charge experiences a force directed upward.
(if it was a negative charge, we should have taken the opposite direction)
The state of matter that the particles move independently of one another with very little attraction is, I believe, gas