<u>Answer:</u> The entropy change of the liquid water is 63.4 J/K
<u>Explanation:</u>
To calculate the entropy change for same phase at different temperature, we use the equation:

where,
= Entropy change
= molar heat capacity of liquid water = 75.38 J/mol.K
n = number of moles of liquid water = 3 moles
= final temperature = ![95^oC=[95+273]K=368K](https://tex.z-dn.net/?f=95%5EoC%3D%5B95%2B273%5DK%3D368K)
= initial temperature = ![5^oC=[5+273]K=278K](https://tex.z-dn.net/?f=5%5EoC%3D%5B5%2B273%5DK%3D278K)
Putting values in above equation, we get:

Hence, the entropy change of the liquid water is 63.4 J/K
Answer:
Since with LiBr no precipitation takes place. So, Ag+ is absent
When we add Li2SO4 to it, precipitation takes place.
Ca2+(aq) + SO42-(aq) ----> CaSO4(s) ...Precipitate
Thus, Ca2+ is present.
When Li3PO4 is added, again precipitation takes place.Reaction is:
Co2+(aq) + PO43-(aq)---->Co3(PO4)2(s) ... Precipitate
A. Ca2+ and Co2+ are present in solution
B. Ca2+(aq) + SO42-(aq) ----> CaSO4(s)
C. 3Co2+(aq) + 2PO43-(aq)---->Co3(PO4)2(s)
7. An exothermic reaction
8. The bonds are forming
AppearanceClear, transparent and homogeneousCloudy, heterogeneous, at least two substances visibleParticle Sizemolecule in sizelarger than 10,000 AngstromsEffect of Light Tyndall Effectnone -- light passes through, particles do not reflect lightvariableEffect of Sedimentationnoneparticles will eventually settle ou
Answer:
Alkanes naturally occur in crude oil and are a major component of many fuels and solvents derived from petroleum