Answer:
The kinetic energy of the system after the collision is 9 J.
Explanation:
It is given that,
Mass of object 1, m₁ = 3 kg
Speed of object 1, v₁ = 2 m/s
Mass of object 2, m₂ = 6 kg
Speed of object 2, v₂ = -1 m/s (it is moving in left)
Since, the collision is elastic. The kinetic energy of the system before the collision is equal to the kinetic energy of the system after the collision. Let it is E. So,

E = 9 J
So, the kinetic energy of the system after the collision is 9 J. Hence, this is the required solution.
Answer:
A. 69.9m
Explanation:
Given parameters:
Initial velocity = 10.5m/s
Final velocity = 21.7m/s
Time = 4.34s
Unknown:
Distance traveled = ?
Solution:
Let us first find the acceleration of the car;
Acceleration =
v is final velocity
u is initial velocity
t is the time
Acceleration =
= 2.58m/s²
Distance traveled;
V² = U² + 2aS
21.7² = 10.5² + 2 x 2.58 x S
360.64 = 2 x 2.58 x S
S = 69.9m
(3) 8.3 N/kg. The gravitational field strength at a point is the force per unit mass exerted on a mass placed at that point. So at the point where the Hubble telescope is, it is (9.1 x 10^4)N/(1.1 x 10^4 kg) = 8.3 N/kg
Fam
Values in physics that do not affect each other are considered Independent values
I think it’s the third one idk tho