Hope this helps solve your problem!
Is an imbalance of electric charges within or on the surface of a material. The charge remains until it is able to move away by means of an electric current or electrical discharge. Static electricity is named in contrast with current electricity, which flows through wires or other conductors and transmits energy.[1]
The answer is 232 plus 450
Explanation:
It is given that,
The time period of artificial satellite in a circular orbit of radius R is T. The relation between the time period and the radius is given by :

The radius of the orbit in which time period is 8T is R'. So, the relation is given by :



So, the radius of the orbit in which time period is 8T is 4R. Hence, this is the required solution.
Google said
How many electrons fit in each shell around an atom?
The maximum number of electrons that can occupy a specific energy level can be found using the following formula:
Electron Capacity = 2n2
The variable n represents the Principal Quantum Number, the number of the energy level in question.
Energy Level
(Principal Quantum Number) Shell Letter Electron Capacity
1 K 2
2 L 8
3 M 18
4 N 32
5 O 50
6 P 72
Keep in mind that an energy level need not be completely filled before electrons begin to fill the next level. You should always use the Periodic Table of Elements to check an element's electron configuration table if you need to know exactly how many electrons are in each level.