Explanation:
Sodium hydroxide completely ionizes in water to produce sodium ions and hydroxide ions. Hydroxide ions are in excess and neutralize all acetic acid added by the following ionic equation:
The mixture would contain
if undergoes no hydrolysis; the solution is of volume after the mixing. The two species would thus be of concentration and , respectively.
Construct a RICE table for the hydrolysis of under a basic aqueous environment (with a negligible hydronium concentration.)
The question supplied the <em>acid</em> dissociation constant for acetic acid ; however, calculating the hydrolysis equilibrium taking place in this basic mixture requires the <em>base</em> dissociation constant for its conjugate base, . The following relationship relates the two quantities:
... where the water self-ionization constant under standard conditions. Thus . By the definition of :
Run it up by nav and lemonade by dont oliver
Answer: 600 mL
Explanation:
Given that;
M₁ = 5.85 m
M₂ = 1.95 m
V₁ = 200 mL
V₂ = ?
Now from the dilution law;
M₁V₁ = M₂V₂
so we substitute
5.85 × 200 = 1.95 × V₂
1170 = 1.95V₂
V₂ = 1170 / 1.95
V₂ = 600 mL
Therefore final volume is 600 mL
Answer: 300g
Explanation:
first we write the given values on top
224L. x
3 NO2 (g) + H2O (l) = 2HNO3 (l) + NO (g)
22.4L 30g
then we form a formula
224L/22.4L= x/30g
224*30/22.4
6720/22.4= 300g