cytoplasm
cell membrane
nucleus (unless bacteria)
DNA
mitochondria (unless root hair cell)
Considering the definition of pOH and strong base, the pOH of the aqueous solution is 1.14
The pOH (or potential OH) is a measure of the basicity or alkalinity of a solution and indicates the concentration of ion hydroxide (OH-).
pOH is expressed as the logarithm of the concentration of OH⁻ ions, with the sign changed:
pOH= - log [OH⁻]
On the other hand, a strong base is that base that in an aqueous solution completely dissociates between the cation and OH-.
LiOH is a strong base, so the concentration of the hydroxide will be equal to the concentration of OH-. This is:
[LiOH]= [OH-]= 0.073 M
Replacing in the definition of pOH:
pOH= -log (0.073 M)
<u><em>pOH= 1.14 </em></u>
In summary, the pOH of the aqueous solution is 1.14
Learn more:
The answer would b 100<span>vhvvhygygyfyftftfffffffrdrdrdrdrdr</span>
The answer is D, carbon and oxygen reacting to form carbon dioxide.
Alpha partical is a He nucleus. When decaying alpha particle mass is reduced by 4 and atomic number is reduced by 2.
The actual element which has 102 protons is No (Nobelium).
Since it has 167 neutrons, the mass = protons + neutrons = 102 + 167 = 269
after an alpha decay, the new element formed has 100 protons which is Fm ( Fermium)
the alpha decaying equation is,
₁₀₂²⁶⁹No → ₁₀₀²⁶⁵Fm + ₂⁴α + heat
the total mass and the atomic number( numbe rof protons) must be equal in both sides.