Out of the 3 types of heat transfer, this scenario would be most likely to be an example of convection.
Convection is where the transferring of heat is resulted through the movements of fluid, but in this case it is air. What happens is that when a part of the whole mass of air is heated, the hotter air rises and the cooler air descends and takes place of the hotter air before it was heated. Then, the cooler air becomes hotter and the hotter air before becomes the cooler air of both, which then results to the repeat of the exchange of places. This creates a motion until the whole mass has achieved mutual temperature, the heat source has stopped or extinguished, or there is a shift of temperature.
Answer:
Subduction of the Juan de Fuca plate causes melting and magma generation in the mantle which rises to the surface to create the Cascade volcanoes.
Explanation:
Hi there!
We can use the work-energy theorem to solve.
Recall that:

The initial kinetic energy is 0 J because the crate begins from rest, so we can plug in the given values for mass and final velocity:

Now, we can define work:

Now, plug in the values:

Solve for theta:

The Average velocity for the bacterium is 0.75 unit/sec.
<u>Explanation:</u>
The given values are in the vector form
Where,
dS = distance covered
dT = time interval
Now, to calculate distance covered, we have

&

d S=(4.6 i+1.9 k)-(2.2 i+3.7 j - 1.2 k)
d S=(4.6-2.2) i+(0-3.7) j+(1.9+1.2) k
d S=2.4 i-3.7 j+3.1 k
Now, putting these values in the standard formula to evaluate the average velocity, we get;


As dT=7.2 sec
Now,
Solving the equation, we get;


Hence, the average velocity for the bacterium is 0.75 unit/sec.