1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
german
3 years ago
11

A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is r

otating at 11.0 rev/s; 30.0 revolutions later, its angular speed is 18.0 rev/s. Calculate (a) the angular acceleration (rev/s2), (b) the time required to complete the 30.0 revolutions, (c) the time required to reach the 11.0 rev/s angular speed, and (d) the number of revolutions from rest until the time the disk reaches the 11.0 rev/s angular speed.

Physics
2 answers:
aivan3 [116]3 years ago
5 0

Answer:

Explanation:

Given that,

Initial angular velocity is 0

ωo=0rad/s

It has angular velocity of 11rev/sec

ωi=11rev/sec

1rev=2πrad

Then, wi=11rev/sec ×2πrad

wi=22πrad/sec

And after 30 revolution

θ=30revolution

θ=30×2πrad

θ=60πrad

Final angular velocity is

ωf=18rev/sec

ωf=18×2πrad/sec

ωf=36πrad/sec

a. Angular acceleration(α)

Then, angular acceleration is given as

wf²=wi²+2αθ

(36π)²=(22π)²+2α×60π

(36π)²-(22π)²=120πα

Then, 120πα = 8014.119

α=8014.119/120π

α=21.26 rad/s²

Let. convert to revolution /sec²

α=21.26/2π

α=3.38rev/sec

b. Time Taken to complete 30revolution

θ=60πrad

∆θ= ½(wf+wi)•t

60π=½(36π+22π)t

60π×2=58πt

Then, t=120π/58π

t=2.07seconds

c. Time to reach 11rev/sec

wf=wo+αt

22π=0+21.26t

22π=21.26t

Then, t=22π/21.26

t=3.251seconds

d. Number of revolution to get to 11rev/s

∆θ= ½(wf+wo)•t

∆θ= ½(0+11)•3.251

∆θ= ½(11)•3.251

∆θ= 17.88rev.

Elodia [21]3 years ago
3 0

Explanation:

Below is an attachment containing the solution

You might be interested in
An astronaut exploring a distant solar system lands on an unnamed planet with a radius of 2530 km. When the astronaut jumps upwa
Natali [406]

Answer:

1.38*10^18 kg

Explanation:

According to the Newton's law of universal gravitation:

F=G*\frac{m_a*m_p}{r^2}

where:

G= Gravitational constant (6.674×10−11 N · (m/kg)2)

ma= mass of the astronaut

mp= mass of the planet

F=m_a.a\\(v_f )^2=(v_o)^2+2.a.\Delta y\\\\a=\frac{(v_f)^2-(v_o)^2}{2.\Delta y}\\\\a=\frac{(0)^2-(4.29m/s)^2}{2.0.64m}=14.38m/s^2\\\\F=m_a*14.38m/s^2

so:

m_a*14.38m/s^2=(6.674*10^{-11}N.(m/kg)^2)*\frac{m_a.m_p}{(2.530*10^3m)^2}\\m_p=\frac{14.38m/s^2(2.530*10^3m)^2}{(6.674*10^{-11}N.(m/kg)^2)}\\\\m_p=1.38*10^{18}kg

7 0
4 years ago
A long string is wrapped around a 6.6-cm-diameter cylinder, initially at rest, that is free to rotate on an axle. The string is
lys-0071 [83]

Answer:

\omega_f=571.42\ rpm

Explanation:

It is given that,

Diameter of cylinder, d = 6.6 cm

Radius of cylinder, r = 3.3 cm = 0.033 m

Acceleration of the string, a=1.5\ m/s^2

Displacement, d = 1.3 m

The angular acceleration is given by :

\alpha =\dfrac{a}{r}

\alpha =\dfrac{1.5}{0.033}

\alpha =45.46\ rad/s^2

The angular displacement is given by :

\theta=\dfrac{d}{r}

\theta=\dfrac{1.3}{0.033}

\theta=39.39\ rad

Using the third equation of rotational kinematics as :

\omega_f^2-\omega_i^2=2\alpha \theta

Here, \omega_i=0

\omega_f=\sqrt{2\alpha \theta}

\omega_f=\sqrt{2\times 45.46\times 39.39}

\omega_f=59.84\ rad/s

Since, 1 rad/s = 9.54 rpm

So,

\omega_f=571.42\ rpm

So, the angular speed of the cylinder is 571.42 rpm. Hence, this is the required solution.

5 0
4 years ago
A plucked violin string carries a traveling wave given by the equation f(x,t)=asin[b(x−ct)+ϕi], with a = 0.00580 m , b = 33.05 m
Viktor [21]

Answer:

A) Φ = 0 , B)  T = 7.76 s

Explanation:

A) to find the value of the phase constant replace the value

          0 = a sin (b (0- 0) + Φ)

           0 = sin Φ

           Φ = sin⁻¹ 0

           Φ = 0

B) the period is defined by time or when the movement begins to repeat itself

So that the sine function is repeated when the angle passes 2pi

            b (x- ct) = 2pi

If we are at a fixed point x = 0

           b c t = 2pi

            t = 2π / bc

Let's calculate

            T = 2π / (33.05 245)

            T = 7.76 s

0 0
3 years ago
Read 2 more answers
Which shows a decrease in fluid pressure? A. A fan is turned from high speed to low speed. B. Oxygen is compressed as it is put
Volgvan

Answer:

Option A.

A fan is turned from high speed to low speed.

Explanation:

It is important to note that air is also a fluid.

In a system, static pressure of air increases with the speed of rotation of the fan. This is because when the speed of the fan is increased, the force with which it is pushing the air molecules is increased. Since pressure is a relationship between force and area, the pressure of the air molecules will be increased.

Conversely, when the speed of the fan is reduced, the priming force on the air molecules will be reduced, hence the pressure of the air will drop.

This makes option A the correct option

8 0
3 years ago
Read 2 more answers
P2O5 is a covalent compound used to purify sugar. What is the name of this compound?
AfilCa [17]

Answer:

B) Diphosphorus pentoxide

Explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • The horse on a carousel is 3.5m from the central axis.A. If the carousel rotates at 0.13 rev/s , how long does it take the horse
    10·1 answer
  • When an object has a net force of zero, then it is said to be in what?
    14·1 answer
  • An object suspended from a spring vibrates with simple harmonic motion. Part A At an instant when the displacement of the object
    15·1 answer
  • What force is necessary to accelerate a 1050 kg car at a rate of 10 m/s2?
    5·1 answer
  • Which of the following is an example of aerobic activity?
    15·1 answer
  • What happens to momentum during a collision?...i give brainliest
    9·1 answer
  • The voltage across the diode indicates the energy given to charge carriers (electrons and holes, but more about that later in th
    12·1 answer
  • An asteroid is on a collision course with Earth. An astronaut lands on the rock to bury explosive charges that will blow the ast
    15·1 answer
  • 5. In which image below is the most work being wasted as heat?
    8·1 answer
  • Jack is a transgender male who is sexually attracted to males. Based on what you know about sex
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!