Answer:
4000 km
Explanation:
as we know velocity of electromagnetic wave is c

frequency given (f) = 76 Hz
wavelength ?
using
λ
λ = 
λ =
≈4000 km
so final answer λ = 4000km
Answer:
A physical change is a change to the physical—as opposed to chemical—properties of a substance. They are usually reversible. The physical properties of a substance include such characteristics as shape (volume and size), color, texture, flexibility, density, and mass.
From Carnot's theorem, for any engine working between these two temperatures:
efficiency <= (1-tc/th) * 100
Given: tc = 300k (from question assuming it is not 5300 as it seems)
For a, th = 900k, efficiency = (1-300/900) = 70%
For b, th = 500k, efficiency = (1-300/500) = 40%
For c, th = 375k, efficiency = (1-300/375) = 20%
Hence in case of a and b, efficiency claimed is lesser than efficiency calculated, which is valid case and in case of c, however efficiency claimed is greater which is invalid.
Answer:
a. True
Explanation:
Distance is described with only magnitude. It is defined as the total path covered by an object, in other words it is the length of a path followed by a particle.
Displacement is described with both magnitude and direction. It is distance traveled in a specified direction or change in position in some time interval.
Therefore, the correct option is " a. True"
Celestial bodies in the universe like the stars, gain their energy by nuclear fusion. This is a nuclear reaction that emits radiation by joining subatomic particles together to yield another new element. This cause by instability of certain elements due to their high neutron-to-proton ratio. The most stable element there is, is Fe-26. Elements lighter than Fe-26 are most likely to undergo nuclear fusion (combining), while elements heavier than Fe-26 are most likely to undergo nuclear fission (breaking).
So that is how the Sun gains its energy. It is very abundant in hydrogen, such that hydrogen undergoes nuclear fusion. Two protons from two hydrogen atoms combine at very very high temperatures to form a Helium atom. Therefore, a high-mass star life is very abundant in Hydrogen, while a low-mass star life is very abundant in Helium.