<h3>Take the weighted average of the individual isotopes.</h3><h3 /><h3>Explanation:</h3><h3>63</h3><h3>C</h3><h3>u</h3><h3> has </h3><h3>69.2</h3><h3>%</h3><h3> abundance.</h3><h3 /><h3>65</h3><h3>C</h3><h3>u</h3><h3> has </h3><h3>30.8</h3><h3>%</h3><h3> abundance.</h3><h3 /><h3>So, the weighted average is </h3><h3>62.93</h3><h3>×</h3><h3>69.2</h3><h3>%</h3><h3> </h3><h3>+</h3><h3> </h3><h3>64.93</h3><h3>×</h3><h3>30.8</h3><h3>%</h3><h3> </h3><h3>=</h3><h3> </h3><h3>63.55</h3><h3> </h3><h3>amu</h3><h3> .</h3><h3 /><h3>If we look at the Periodic Table, copper metal (a mixture of isotopes but </h3><h3>63</h3><h3>C</h3><h3>u</h3><h3> and </h3><h3>65</h3><h3>C</h3><h3>u</h3><h3> predominate) has an approximate atomic mass of </h3><h3>63.55</h3><h3> </h3><h3>g</h3><h3>⋅</h3><h3>m</h3><h3>o</h3><h3>l</h3><h3>−</h3><h3>1</h3><h3> , so we know we are right.</h3>
Answer - Inter-molecular attractions
Explanation-
As we know everything around us is made up of matter that means everything has molecules as their basic structure. The state of anything is decided by the spaces between the molecules.
The state of the objects that have strong inter-molecular attractions a solid and gradually the lesser will be in state of liquid and gas. The attraction between the molecules is overcome only when a certain amount of energy is provided from outside.
Amy asked her mom the similarities between static electricity and electric discharge.
<u>Answer:</u> The volume of the container is 
<u>Explanation:</u>
To calculate the volume of water, we use the equation given by ideal gas, which is:

or,

where,
P = pressure of container = 200 kPa
V = volume of container = ? L
m = Given mass of water = 2.61 kg = 2610 g (Conversion factor: 1kg = 1000 g)
M = Molar mass of water = 18 g/mol
R = Gas constant = 
T = temperature of container = ![200^oC=[200+273]K=473K](https://tex.z-dn.net/?f=200%5EoC%3D%5B200%2B273%5DK%3D473K)
Putting values in above equation, we get:

Converting this into cubic meter, we use the conversion factor:

So, 

Hence, the volume of the container is 