For this problem, we use the Coulomb's law written in equation as:
F = kQ₁Q₂/d²
where
F is the electrical force
k is a constant equal to 9×10⁹
Q₁ and Q₂ are the charge of the two objects
d is the distance between the two objects
Substituting the values:
F = (9×10⁹)(-22×10⁻⁹ C)(-22×10⁻⁹ C)/(0.10 m)²
F = 0.0004356 N
Answer:
5.3 m/s
Explanation:
First, find the time it takes for him to fall 7m.
y = y₀ + v₀ t + ½ at²
0 = 7 + (0) t + ½ (-9.8) t²
0 = 7 − 4.9 t²
t ≈ 1.20 s
Now find the velocity he needs to travel 6.3m in that time.
x = x₀ + v₀ t + ½ at²
6.3 = 0 + v₀ (1.20) + ½ (0) (1.20)²
v₀ ≈ 5.27 m/s
Rounded to two significant figures, the man must run with a speed of 5.3 m/s.
Answer:
<h2>3.3 J</h2>
Explanation:
The potential energy of a body can be found by using the formula
PE = mgh
where
m is the mass
h is the height
g is the acceleration due to gravity which is 10 m/s²
From the question we have
PE = 1.5 × 10 × 0.22
We have the final answer as
<h3>3.3 J</h3>
Hope this helps you
Answer:
Explanation:
side of the square loop, a = 7 cm
distance of the nearest side from long wire, r = 2 cm = 0.02 m
di/dt = 9 A/s
Integrate on both the sides

i = 9t
(a) The magnetic field due to the current carrying wire at a distance r is given by


(b)
Magnetic flux,





(c)
R = 3 ohm

magnitude of voltage is
e = 1.89 x 10^-7 V
induced current, i = e / R = (1.89 x 10^-7) / 3
i = 6.3 x 10^-8 A
Answer:
two people who are not going to be able to make it to class today because of the day and then I will be there at the house and then we can go