The gravitation force with which the earth is being pulled can be determined by applying Newton's law of universal gravitation.
<h3>
What is gravitation force?</h3>
According Newton's law of universal gravitation, the force exerted between two objects in the universe is directly proportional to the product of masses of the two objects and inversely proportional to the square of the distance between the two objects.
Mathematically, the formula for gravitation force is given as;
F = GmM/R²
where;
- m is the mass of the object
- M is mass of earth
- R is the distance of the object from earth
- G is universal gravitation constant
If the mass of the object is know and the distance between earth and the object is also known, the force with which the earth is being pulled can be calculated by applying Newton's law of universal gravitation as shown in the above equation.
Thus, the force with which the earth is being pulled can calculated as well.
Learn more about gravitation force here: brainly.com/question/27943482
#SPJ1
Answer:
The temperature and gravity both affects the density
Answer:
400 kilogram
Explanation:
Force exerted is directly proportional to the mass of an object.
F=ma where m is mass and a is acceleration. Taking uniform acceleration on all objects then the larger the mass the higher the force and vice versa. Theredore, among the masses given, 400 kilograms is the largest hence it exerts the largest force at the bottom
2.B
4.C
3.D
1.C
5.C
Theses are the right answer
Answer:
Potential energy will be
Explanation:
We have given the height of the basin is h = 6 m
Area of the basin 
Volume 
Density 
We know that mass is given by 
We know that potential energy is given by 