Answer:
Car 1
Explanation:
The steering column which moves the least is less likely to to the driver's chest ordinarily. Driver tends to remain in motion until restrained. Assuming a seat belt not airbag
Generally one would compute a vector find direction and distance. This is like solving for a hypotenuse / in a right angled triangle problem. On face value the column moving the least is safer. The 6/24 would hit the upper chest, face, or possibly break the neck.
hence, car 1 moved 3 cm upward and 2 cm rearward is safer.
Yes spoon can sound like a bell. To prove this, we perform an experiment.The handle of the spoon is tied at the mid point of the string, then wrap the ends of the string around pointer fingers. Now place fingers in ears. Lean over so that spoon hangs freely and swing the spoon so it taps against a door.
A sound is produced because the spoon vibrated, causing sound waves to travel up the string and into ears.
Answer:
The force is 
Explanation:
The moment of Inertia I is mathematically evaluated as

Substituting
for M(Mass of the wheel) and
for
(Radius of wheel)


The torque on the wheel due to net force is mathematically represented as

Substituting 135 N for
(Force acting on sprocket),
for
(radius of the chain) and F is the force acting on the sprocket due to the chain which is unknown for now

This same torque due to the net force is the also the torque that is required to rotate the wheel to have an angular acceleration of
and this torque can also be represented mathematically as

Now equating the two equation for torque
Making F the subject

Substituting values


Answer:
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Explanation:
The Impulse Theorem states that the impulse experimented by the hockey park is equal to the vectorial change in its linear momentum, that is:
(1)
Where:
- Impulse, in kilogram-meters per second.
- Mass, in kilograms.
- Initial velocity of the hockey park, in meters per second.
- Final velocity of the hockey park, in meters per second.
If we know that
,
and
, then the impulse applied by the stick to the park is approximately:
![I = (0.2\,kg)\cdot \left(35\,\hat{i}\right)\,\left[\frac{m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%20%280.2%5C%2Ckg%29%5Ccdot%20%5Cleft%2835%5C%2C%5Chat%7Bi%7D%5Cright%29%5C%2C%5Cleft%5B%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%5D)
![I = 7\,\hat{i}\,\left[\frac{kg\cdot m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%207%5C%2C%5Chat%7Bi%7D%5C%2C%5Cleft%5B%5Cfrac%7Bkg%5Ccdot%20m%7D%7Bs%7D%20%5Cright%5D)
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.