Socratic helps for you page
Answer:
Even the most powerful light-focusing microscopes can't visualise single atoms. What makes an object visible is the way it deflects visible light waves. Atoms are so much smaller than the wavelength of visible light that the two don't really interact. To put it another way, atoms are invisible to light itself.
Explanation:
Can you give me Brainliest pls
And Your welcome :)
Zeff = Z - S
Here, Z is the number of protons in the nucleus, that is, atomic number, and S is the number of nonvalence electrons.
For boron, the electronic configuration is 1s₂ 2s₂ 2p₄
Z = 5, S = 2
Zeff = 5-2 = +3
For O, electronic configuration is 1s₂ 2s₂ 2p₄
Z = 8, S = 2
Zeff = 8-2 = +6
Hence, the correct answer is second option, that is, +3 and +6, the Zeff of boron is smaller in comparison to O, thus, boron exhibits a bigger size than O.
Answer:
4.7 kJ/kmol-K
Explanation:
Using the Debye model the specific heat capacity in kJ/kmol-K
c = 12π⁴Nk(T/θ)³/5
where N = avogadro's number = 6.02 × 10²³ mol⁻¹, k = 1.38 × 10⁻²³ JK⁻¹, T = room temperature = 298 K and θ = Debye temperature = 2219 K
Substituting these values into c we have
c = 12π⁴Nk(T/θ)³/5
= 12π⁴(6.02 × 10²³ mol⁻¹)(1.38 × 10⁻²³ JK⁻¹)(298 K/2219 K)³/5
= 9710.83(298 K/2219 K)³/5
= 1942.17(0.1343)³
= 4.704 J/mol-K
= 4.704 × 10⁻³ kJ/10⁻³ kmol-K
= 4.704 kJ/kmol-K
≅ 4.7 kJ/kmol-K
So, the specific heat of diamond in kJ/kmol-K is 4.7 kJ/kmol-K
Answer:
This question appears incomplete
Explanation:
This question appears incomplete because of the absence of options. However, hydrogen is placed in group 1 because it has just one electron in it's outermost shell (which happens to be the only shell it has) just like every other group 1A/group 1 element. While helium is placed in group 8A/group 18 because it has a completely filled outermost shell (which is also the only shell it has) just like every other element in group 8A/group 18.