Answer:
I think its b
Explanation:
but I wouldn't depend on this answer
Answer:A
Explanation:
The solar system consist of the sun, the planets, stars and other objects. The chemical composition of the Sun consist mainly of Hydrogen and helium.
The sun is the largest object in the Solar system, it comprises nearly all the matter in the Solar System, Also the largest planet after the Sun are Jupiter and Saturn are giant planets forming almost the remaining matter of the solar system.
Like the Sun, the mass of Jupiter and Saturn are composed of roughly 98% hydrogen and helium with 2% of all the other elements combined.
Answer:
At equilibrium, the concentration of
is going to be 0.30M
Explanation:
We first need the reaction.
With the information given we can assume that is:
+
⇄ 2
If there is placed 0.600 moles of NO in a 1.0-L vessel, we have a initial concentration of 0.60 M NO; and no
nor
present. Immediately,
and
are going to be produced until equilibrium is reached.
By the ICE (initial, change, equilibrium) analysis:
I: [
]=0 ; [
]= 0 ; [
]=0.60M
C: [
]=+x ; [
]= +x ; [
]=-2x
E: [
]=0+x ; [
]= 0+x ; [
]=0.60-2x
Now we can use the constant information:
![K_{c}=\frac{[products]^{stoichiometric coefficient} }{[reactants]^{stoichiometric coefficient} }](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5Bproducts%5D%5E%7Bstoichiometric%20coefficient%7D%20%7D%7B%5Breactants%5D%5E%7Bstoichiometric%20coefficient%7D%20%7D)
= 
= 
= 




At equilibrium, the concentration of
is going to be 0.30M