Answer:
2) Their kinetic energy increases.
Explanation:
The particles have more kinetic energy because they move around more when they are a liquid.
This is an acid-base reaction where HF is the acid and H2O is the base (it's amphoteric and can be an acid or a base). The products would then H3O+ (the conjugate acid) and F- (the conjugate base). Now, we can simply construct a reaction using the found products and reactants. This acid-base reaction would be HF + H2O <--> H3O+ + F-.
Hope this helps!
Answer:
a) Graph
b) Weight balance or gas syringe or upside-down measuring cylinder
Explanation:
a) Identifying a trend in temperature change over time - The best tool for this scenario is to represents the temperature daily, weekly, monthly or annually on graph to interpret the fluctuation in temperature owing to local seasonal changes and weather conditions
b) Measuring the mass of a product of a chemical reaction - If the product is solid or liquid then the balance is used to measure the mass. If the product is a gas, then gas syringe or upside-down measuring cylinder is used.
J. J. Thomson discovered electron by performing an experiment using cathode ray tubes. High voltage across is applied across two electrodes at that causes a beam of particles to flow from the the negatively-charged electrode that is cathode to the positively-charged electrode that is anode. Properties of the particles, are tested using two oppositely-charged electric plates around the cathode ray. The cathode ray was deflected away from the negatively-charged electric plate and towards the positively-charged plate. This indicated that the cathode ray was composed of negatively-charged particles. And these negatively charged particles are called electrons.
Answer:
Moles of silver iodide produced = 1.4 mol
Explanation:
Given data:
Mass of calcium iodide = 205 g
Moles of silver iodide produced = ?
Solution:
Chemical equation:
CaI₂ + 2AgNO₃ → 2AgI + Ca(NO₃)₂
Number of moles calcium iodide:
Number of moles = mass/ molar mass
Number of moles = 205 g/ 293.887 g/mol
Number of moles = 0.7 mol
Now we will compare the moles of calcium iodide with silver iodide.
CaI₂ : AgI
1 : 2
0.7 : 2×0.7 = 1.4
Thus 1.4 moles of silver iodide will be formed from 205 g of calcium iodide.