The parietal layers of the membranes line the walls of the body cavity.
hope this helps
It is 72 km/h
I hope it helps
Answer:
Explanation:
Given that, .
R = 12 ohms
C = 500μf.
Time t =? When the charge reaches 99.99% of maximum
The charge on a RC circuit is given as
A discharging circuit
Q = Qo•exp(-t/RC)
Where RC is the time constant
τ = RC = 12 × 500 ×10^-6
τ = 0.006 sec
The maximum charge is Qo,
Therefore Q = 99.99% of Qo
Then, Q = 99.99/100 × Qo
Q = 0.9999Qo
So, substituting this into the equation above
Q = Qo•exp(-t/RC)
0.9999Qo = Qo•exp(-t / 0.006)
Divide both side by Qo
0.9999 = exp(-t / 0.006)
Take In of both sodes
In(0.9999) = In(exp(-t / 0.006))
-1 × 10^-4 = -t / 0.006
t = -1 × 10^-4 × - 0.006
t = 6 × 10^-7 second
So it will take 6 × 10^-7 a for charge to reached 99.99% of it's maximum charge
Answer:1. Inelastic deformation of wood and steel
2.thermal energy: hear from wood and steel
3.acoustic energy
Explanation:
Answer: option d.
Explanation:1) The
direction of the
field lines inform about the
sign of the charges.
The field lines <span>
extend from the positive charges to the negative charges, so you can conclude that the charge C is positve and both charge A and charge B are negative:
</span><span>
</span><span>
</span><span>Charge C: positive
</span><span>
</span><span>Charge A: negative
</span><span>
</span><span>Charge B: netative
</span>
2) The
density of the lines (number of lines in a region) inform about the
magnitude of the electric field.
Since the charges are at the same distance, the magnitude of the electric field informs directly about the magnitude of the force and that about the magnitude of the charges.
Since, there are the
double of lines between C and B than between C and A, the magnitude of
charge B is the double than the magnitud of charge A.
From the five options given (a throug e) the only that is consistent with that charges A and B have the same sign, that charge C has different sign, and that charge B is the double of charge A is: