The answer is more protons than electrons.
Answer:
d hope this helps u hhwjs GD jehehj
Answer:
En verdad solo el 0,025% del agua de la tierra es dulce
Explanation:
Answer is: 1160 J of heat Is required to increase the temperature.
m(Fe) = 100 g.
∆T = 40,2 - 15 = 25,2°C.
C(Fe) = 0,46 J/g•°C.
Q = m(Fe) • C • ∆T.
Q = 100 g • 0,46 J/g•°C • 25,2°C
Q = 1160 J.
C - specific heat.
Answer:
75 kJ/mol
Explanation:
The reactions occur at a rate, which means that the concentration of the reagents decays at a time. The rate law is a function of the concentrations and of the rate constant (k) which depends on the temperature of the reaction.
The activation energy (Ea) is the minimum energy that the reagents must have so the reaction will happen. The rate constant is related to the activation energy by the Arrhenius equation:
ln(k) = ln(A) -Ea/RT
Where A is a constant of the reaction, which doesn't depend on the temperature, R is the gas constant (8.314 J/mol.K), and T is the temperature. So, for two different temperatures, if we make the difference between the two equations:
ln(k1) - ln(k2) = ln(A) - Ea/RT1 - ln(A) + Ea/RT2
ln (k1/k2) = (Ea/R)*(1/T2 - 1/T1)
k1 = 8.3x10⁸, T1 = 142.0°C = 415 K
k2 = 6.9x10⁶, T2 = 67.0°C = 340 K
ln(8.3x10⁸/6.9x10⁶) = (Ea/8.314)*(1/340 - 1/415)
4.8 = 6.39x10⁻⁵Ea
Ea = 75078 J/mol
Ea = 75 kJ/mol