Answer:
An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about 2 years.
Explanation:
Given;
orbital period of 3 years, P = 3 years
To calculate the years of an orbital with a semi-major axis, we apply Kepler's third law.
Kepler's third law;
P² = a³
where;
P is the orbital period
a is the orbital semi-major axis
(3)² = a³
9 = a³
a = ![a = \sqrt[3]{9} \\\\a = 2.08 \ years](https://tex.z-dn.net/?f=a%20%3D%20%5Csqrt%5B3%5D%7B9%7D%20%5C%5C%5C%5Ca%20%3D%202.08%20%5C%20years)
Therefore, An asteroid that has an orbital period of 3 years will have an orbital with a semi-major axis of about 2 years.
Answer: mass for Pyrex glass 84.21g
mass for sand 61.6g
mass for ethanol 41.32g
mass for water 62.07g
Explanation
By definition specific heat is the amount of heat required to change the temperature of 1 kg mas by 1°C
Q=mcΔT is formula for specific heat
Q is heat transfer
m is mass
ΔT is change in temperature
c is specific heat
c of Pyrex glass= 0.75 j/g°C
c of sand = 0.84 j/g°C
c of ethanol= 2.42 j/g°C
c of water = 4.18 j/g°C
now we will make M(mass) the subject, so equation becomes
m=Q/cΔT
for
pyrex glass T<em>f=</em>55.4°C
m=1920/(55.4-25)*0.75
m=84.21g {after cutting J(joules) and °C we are left with g(grams)}
for
sand T<em>f</em>=62.1°C
m=1920/(62.1-25)*0.84
m=61.6g {after cutting J(joules) and °C we are left with g(grams)}
for
ethanol T<em>f</em>=44.2°C
m=1920/(44.2-25)*2.42
m=41.32g {after cutting J(joules) and °C we are left with g(grams)}
for
water T<em>f=</em>32.4°
m=1920/(32.4-25)*4.18
m=62.07g {after cutting J(joules) and °C we are left with g(grams)}
i hope you understand the solution, thank you.
Yo sup??
the correct answer is option C ie
a material that has a low resistance and allows charges to move freely
this is a basic property shown by conductors
Hope this helps
Answer:
3 up 1 across is the answer
Explanation:
Step one: find the Y intercept( Where the line cuts the y-axis)
X = 0
Y = 3(0) (p.s cross out the (o)
y = 2
Step 2: find the gradient (slope of the line)
rise = 3
------ ---
Run 1
Answer:
part (a) 
Part (b) 
Explanation:
Given,
- Mass of the larger disk =

- Mass of the smaller disk =

- Radius of the larger disk =

- Radius of the smaller disk =

- Mass of the block = M = 1.60 kg
Both the disks are welded together, therefore total moment of inertia of the both disks are the summation of the individual moment of inertia of the disks.

part (a)
Given that a block of mass m which is hanging with the smaller disk,
Let 'T' be 'a' be the tension in the string and acceleration of the block.
From the free body diagram of the smaller block,

From the pulley,

From the equation (1) and (2),

part (b)
Above expression for the acceleration of the block is only depended on the radius of the pulley.
Radius of the larger pulley = 
Let
be the acceleration of the block while connecting to the larger pulley.