Answer:
f(5)=-1
Step-by-step explanation:
Answer:
1.7 × 10⁻⁴
Step-by-step explanation:
The question relates to a two sample z-test for the comparison between the means of the two samples
The null hypothesis is H₀: μ₁ ≤ μ₂
The alternative hypothesis is Hₐ: μ₁ > μ₂

Where;
= 13.5
= 12
σ₁ = 2.5
σ₂ = 1.5
We set our α level at 0.05
Therefore, our critical z = ± 1.96
For n₁ = n₂ = 23, we have;

We reject the null hypothesis at α = 0.05, as our z-value, 3.5969 is larger than the critical z, 1.96 or mathematically, since 3.5969 > 1.96
Therefore, there is enough statistical evidence to suggest that Alyse time is larger than Jocelyn in a 1 mile race on a randomly select day and the probability that Alyse has a larger time than Jocelyn is 0.99983
Therefore;
The probability that Alyse has a smaller time than Jocelyn is 1 - 0.99983 = 0.00017 = 1.7 × 10⁻⁴.
10 windows : divide 40/5=8
Then divide 80/8 =10
Answer:
4
Step-by-step explanation:
Answer:
99.89% of students scored below 95 points.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What percent of students scored below 95 points?
This is the pvalue of Z when X = 95. So



has a pvalue of 0.9989.
99.89% of students scored below 95 points.